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Abstract—In dual-hop multi-relaying wireless systems, the 

non-closed form expression in log-normal probability 

distributions and high varying standard deviations makes it 

impossible to effectively execute performance analyses of 

outage probability and bit-error-rate (BER) performance 

levels; thus, an analysis framework was proposed for use in a 

composite (Rayleigh plus log-normal) fading channel. 

Developing analytical derivations involved generalizing the 

standard approaches for the probability density function (PDF) 

and the cumulative density function (CDF) of a composite 

fading channel at a conditioned constraint; that is, the signal-

to-noise power (SNR) of relay hop segments is relatively high 

to the targeted threshold when the max-mini relay selection 

scenario is adopted. The analytical deviations of outage 

probability and BER performance levels are closed-form 

expressions that are corroborated using Monte Carlo 

simulations and exact expression (integral form), yielding 

consistent results. Thus, the proposed analysis framework 

provides a simple and efficient approach for evaluating the 

influence of the shadowing effect and diversity order in system 

design applications. 

Index Terms –amplify-and-forward (AF) relay, bit-error-rate 

(BER), cumulative density function (CDF),  dual-hop multi-

relaying, log-normal fading, moment generation function (MGF), 

outage probability, probability density function (PDF), Rayleigh 

fading, standard deviation. 

I. INTRODUCTION 

Various analytical studies of relaying schemes [1 - 6] have 

focused on improving transmission throughput and reducing 

outage probability, concluding that amplify-and-forward 

(AF) relaying is the simplest and most economic relaying 

approach in practical deployment. Although the peak power 

constraint strategy is attractive [3], it is limited for real-

world multi-relaying applications, because of the lack 

information on the log-normal shadowing effect. Analytical 

expressions for outage probability have been proposed 

based on imperfect non-identical log-normal fading 

channels [4] and the bit-error-rate (BER) performance levels 

have been analytically evaluated using cooperative relays 

that combine selections employing in-door log-normal 

fading for regenerative relay selection schemes [5]. 

Although log-normal fading has been used in previous  

studies, these have focused only on the channel state 

information (CSI) imperfection and the decode-and-forward 

(DF) relaying schemes. Numerous studies [6, 7] have 

approximated the log-normal distribution in a linear closed-

form or a more accurate expression, requiring complex 

algorithms and relay protocols. References [4, 7] modeled 

the power-sum of generically indoor correlated log-normal 

fading as a consequence of the particular structure of the 

end-to-end signal-to-noise power (SNR), conducting a 

performance analysis of multi-hop networks by using two 

receiver schemes. By resolving the end-to-end relaying log-

normal sum-up using a Wilkinson approximation [4], 

probable closed-form expressions may be achieved in 

limited applications in which the in-door correlated log-

normal fading channel is considered. Reference [8] 

employed a performance analysis using a closed form 

approach for a cooperative network; however, these 

expressions considered only Rayleigh fading and not the 

shadowing effect. We now consider the general case in 

which only the “best” relay was selected over multi-relay 

nodes to participate in signal forwarding, in the underlying 

source-relay-destination (S→R→D) link by using the max-

mini relay selection scenario  [2, 8]. Because the max-mini 

relay selection process has been extensively examined [2, 8, 

9], it was omitted from this paper. Thus, the minimum 

probability theory and maximum probability theory were 

used to generate the cumulative density functions (CDF) of 

the single dual-hop relaying and the CDF of dual-hop multi-

relaying links (i.e., M relay nodes), respectively. Moreover, 

the corresponding moment generating function (MGF) was 

derived to generate the analytical derivations of the outage 

probability and BER performance; the simulation results 

and exact solutions thereof were compared with the 

analytical deviations, indicating that the proposed closed-

forms approximations are highly accurate when a standard 

deviation constraint is imposed. The main contribution of 

this paper is refining a simple and effective analysis 

framework for used in a composite fading environment.  

 

II. SYSTEM MODELS AND CHANNEL STATISTICS 

Figure 1 shows a schematic of a dual-hop multi-relaying 

network that contains one source node (S), one destination 

node (D), and M relay nodes (Rs). 
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Fig. 1 Dual-hop multi-relaying system 

 

The system model is represented by the following equations: 

 

 

                                                                                          (1)
 

where R  is the received signal at R, D  is the received 

signal at D with a relay gain G, and the channel gains are 1r   

and 2r  for the first relay hop S  R and second hop R  D, 

respectively. Only the “best” relay [2] was selected as a 

candidate to relay the signal, s~ , with signal 

power   SssE E*~~   to D node. Numerous relay selection 

schemes have been extensively examined in [2, 8, 9]; 

however, these schemes therein are not included in the 

current study. The additive white Gaussian noise, in  , for i 

= 1 and 2 at the first relay hop S  R and second hop R  

D, respectively, are mutually independent with in ～

CN  0,0 N . The relay amplification power factor is 

defined as   SNrG E//1 0

2

1

2  [1, 7], and the CSI was 

assumed to be accurately estimated. The channel gains, ir , 

are Rayleigh fading comprising superimposed long-term 

log-normal variations (i.e., composite Rayleigh plus log-

normal fading). Dual-hop relaying was primarily considered 

for a semi-asymmetric network in which relays are mid-way 

between the source and destination and normalized by path 

loss for each relaying link. Regarding the selected dual-hop 

relay, the instantaneous SNR is given as
0

2
SNRrii  , 

where i = 1, 2 corresponds to the first and the second hops, 

respectively. By definition, the average SNR and the mean 

value are given as 
0SNR =

0/ NSE and  ii E   in regard to 

the ith hop segment. 

A. Rayleigh Fading Statistics: 

For rapid short-term fading, the instantaneous power of a 

signal with Rayleigh distributed random variables shows that 

the PDF of i  is expressed as an exponential function on 

the ith hop of an individual dual-hop relaying link: 
 
                                           , , i = 1, 2.                               (2) 

The associated CDF in regard to a target threshold T  is 

given as follows: 

   iTTip  /exp1                                             (3) 

 

When considering a conditioned constraint 
Ti   , the 

asymptotic expression of (3) is approximated as follows: 

 
i

T
TiPlim

i 









                                                       (4) 

The CDF of Rayleigh fading was simplified in this study. 

B. Log-normal Fading Statistics 

It is generally accepted that slow variation is log-normal 

distributed over the area mean. Regarding long-term 

averages of the composite fading channel, the shadowing 

mean is typically called the area mean. Thus, a local mean 

i  fluctuates near the area mean i , and based on the PDF 

of log-normal fading [11, p.48] for each relay hop, 
 
 
                                                                        , i = 1, 2      (5) 

where elog  and a subscript “d” indicates that a signal is 

in logarithm;  idi  10, log ,  idi  10, log , and 
i  

denotes a standard deviation in logarithm. 

C. Composite Fading Statistics: 

When the short-term and log-term distributions are 

superimposed, the resulting marginal PDF [11, 12] for each 

relay hop segment is as follows: 

  

                                                                                            (6) 
 
Substituting (2) and (5) in (6), the PDF (6) is given by 
 
                                                                                            (7)   
 
and the associated CDF in regard to the target threshold 

T is given by 
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(8)                                                

Under the conditioned constraint  
Ti    , by substituting 

(4) and (5) in (6) the CDF in regard to (8) can be rewritten as 
 
 
                                                                                            (9) 
 

The relationship between di , and di , (median value of i ) 

is given as [11] 

 
                                  .                                                        (10) 
 

Setting the condition
ii   , yielded  lndidi  ,,

, 

where ln is a natural log function,   lndd ii /1 and   

is an internal variable; thus, the CDF (9) was rewritten as 

follows: 
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                                                                                     .     (11) 
 
 
A closed-form expression was obtained as follows: 

 
.                                               (12) 

                                                                                         

Using the anti-log in (10), yielded 







 


2

2

2
exp




 i

ii
, 

which was substituted in (12) to derive the following: 
 
                                                                                           (13) 
 
and its corresponding PDF derives 
 
 
                                     .                                                     (14) 
 
This equation is relevant to the log-normal standard 

deviation and the mean SNR value of the ith hop component. 
 

III. OUTAGE PROBABILITY 

The outage probability of dual-hop multi-relaying was 

accessed using the PDFs and CDFs presented in Section II. 

In the relaying application, the outage probability was 

defined as the probability that the system fails to support a 

target data rate, . This target rate corresponds to a specific 

SNR threshold (
T  ) for the system requirement. When 

considering a half-duplex operation for dual-hop relaying, 

this threshold relates to the target end-to-end data rate,  

(bit/Hz/sec.) by using 122  T
. Using a max-mini relay 

selection criterion, the outage probability was derived using 

the maximum and minimum probabilities [10] sequentially 

to select relays over M multi-relaying links and the hop 

selection over the dual hops, respectively, assuming that 

both relaying hops are mutually independent. 

In the first stage, the CDF of each relaying link was 

calculated using the minimum probability [10] of 

  MmL mmm ,..,2,1,,min ,2,1   (i.e., the smallest 
mi,  is 

less than an arbitrary value,  ). 

 

 

 

                                                                                        (15) 

 

where   m
F

,1

and   m
F

,2

are the CDF of 
m,1  and 

m,2  

in the first hop and the second hop, respectively. After 

Substituting (13) in (15) with  T
and a proper index i = 

1 and 2 for both hop segments, (15) was rewritten as 

 

 

 

 

                                                                                       (16) 

 

where the standard deviations,
11 10~    (dB) and 

22 10~   (dB), correspond to the first and second hops, 

respectively, and  10~  . This arrangement expressed the 

standard deviation in dB without losing generality. The PDF 

of  cF ,  cP  can be obtained by differentiating (16) in 

regard to  . 

In the second stage, the CDF of the relay selection was 

accessed for the M multi-relaying link, where the maximum 

probability [11] is employed for the “ best” relay selection 

of   MmLmb ,...,2,1,max  . Because the largest 

instantaneous SNR yields
bi   , the CDF over M relay 

nodes can be express using [13]: 

                            .                                                         (17)   

The corresponding PDF can be obtained using the derivative 

of (17) in regard to  , 

                                           .                                          (18) 

Thus, the outage probability for multi-relaying can be 

expressed using 

 

 

                                                                                      (19) 

where T is the SNR target threshold.
 
After substituting (16) 

in (19) and applying algebraic manipulations, the outage 

probability can be expressed in binomial form: 

 

 

                                                                                       (20) 
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Using the derivative of (20) in regard to T , the PDF of (18) 

can be rewritten as 

 

                                                                .                     (21) 

 

To attain an exact outage probability (integral-form), (8) 

is substituted in (15) by using the proper index for hop 

segments i = 1 and 2; subsequently (15) is substituted in 

(19), yielding the exact solution of outage probability, 
outP

~
 , 

with a non-closed form expression. However, this process 

was omitted because of its complex integration and high 

computational load. The problem can be resolved using 

MATLAB software, as presented in the analytical results in 

the Section V for the accuracy comparisons. 
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IV. BIT-ERROR-RATE (BER) PERFORMANCE 

An analytical approximation of the BER performance was 

derived using the PDF closed-form in (21) and the MGF [11, 

12]. By definition, the average error probability can be 

expressed using a generalized equation [11, 12]: 

 

                                                                                        (22) 

where 
eP  is the average error probability in the basis of 

Gaussian Q-function,  CP  is the PDF derived in (21), and 

a and b are constant values relative to modulation 

constellation size L [12]. Hence, the average BER (22) can 

be rewritten using [11, 12] 

 

                                                                                         (23) 

where  .CM  is the MGF and 







 
L

LLa 1log/4 2
  

 for L-QAM. 

By definition [11, p. 187]     CC Ps LM  , is derived as 

follows: 

 

 

 

                                                                                         (24) 

 

where .L is a Laplace transform and  sCM is derived 

using: 

 

                                                         .                               (25) 

 

After substituting (25) in (23) and replacing the 

variable 2sin2/bs  , the average BER can be written in 

a closed-form expression as follows: 

 

                                                                           .             (26) 

 

The exact BER expression (integral form) can be processed 

by substituting (8) in (15) and (15) in (17) for CDF of multi-

relaying, followed by using a derivative in regard to  for a 

corresponding PDF. Subsequently, the exact BER 

expression can be obtained using a similar MGF process 

(Appendix 2). Because this is not a closed form expression, 

an exact BER analysis must be performed using MATLAB 

programming subroutines because of the aforementioned 

computational complexity and procedures. The analytical 

and simulation results were compared with the closed-form 

approximation to determine their accuracy and tightness, as 

presented in Section V. 

 

V. NUMERCIAL AND SIMULATION RESULTS 

This section provides numerical and simulation results to 

validate the analytical derivations of the outage probabilities 

and BER performance levels. The exact formalism (integral-

form) was treated as a benchmark to corroborate the closed-

form approximations. In the analyses, dual-hop multi-

relaying was primarily considered for a semi-asymmetric 

network (i.e., 
mm ,2,1   ) and multi-relay nodes M = 4. 

The transmission rate was given as 1 bit/Hz/sec for all 

analyses and the constellation size was L = 16 (i.e., 16QAM) 

for the BER analysis. The Jakes model [14] was employed 

to mimic composite fading channels that comprise 2M 

complex narrow-band Gaussian random variables; the 

normalized Doppler frequency 01.0TfD
and log-normal 

fading rate 001.0TfL
were set relative to the bit duration 

T. The simulation results were averaged over 610  Monte-

Carlo simulations per SNR value. 

A. Outage Analysis 

Figures 2 and 3 show the outage probabilities of the 

analytical deviation and exact solution compared with the 

simulation results for balanced shadowing over dual-hop 

(i.e., 
21

~~   ), with standard deviations of 4 dB and 6 dB, 

respectively. Figure 2 shows the approximation that used 

the analytical derivation in (20) produced acceptable 

accuracy by using 
21

~~   = 4 dB, compared with the exact 

solution and simulation results for all multi-relaying node 

numbers; in other words M= 1, 2, 3 and 4.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Outage probability vs. single hop 2,1, ii  with 

balanced shadowing relaying hops (  21
~~  4 dB). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Outage probability vs. single hop i  with balanced 

shadowing relaying hops (  21
~~  6 dB). 
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Figure 3 shows that compared with the exact curves and 

simulation results, the approximations were offset by large 

standard deviations (
21

~~   = 6 dB) and a large diversity 

order (i.e., M = 4), especially in low regime SNR ( 
i   10 

dB). 

Figure 4 shows unbalanced shadowing in a dual-hop relay 

where 
1

~ = 5 dB and 
2

~ = 7 dB. Similar performance curves 

as those shown in Fig. 3 were achieved. Numerous multi-

relay nodes (diversity order) achieved considerable power 

efficiency. However, the difference between the closed-

form approximation and exact expression increases as the 

number of relay node increases. The analytical expression 

performs effectively at an average relaying power of 
i   

10 dB, whereas the approximation curve is slightly less 

accurate for 
i < 10 dB (i.e., 0.5 dB difference at outage 

probability of 210 with M = 4). However, the closed-form 

approximation considerably reduces the computational load 

and offers a simple and efficient outage analysis framework. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 Outage probability vs. single hop 
i  with unbalanced 

shadowing relaying hops (
21

~~   ). 

 

B. BER Analysis 

This subsection introduces the average BER 

performances, which are compared with the exact 

expression and simulation results for a 16QAM modulating 

signal. Figures 5 shows that the approximation that employs 

the analytical derivation in (26) provides acceptable 

accuracy, whereas the differentiable gap becomes apparent 

in a low regime of 
i  with large diversity order (i.e., M = 4). 

However, the analytical derivation is promising and 

provides acceptable accuracy levels for a difference of less 

than 1 dB at BER= 210 , even when M = 4. 

Figures 6 and 7 show that the diversity benefits of multi-

relay (M-order) are offset at large standard deviations  in 

any relay hop (i.e., 
i~   6 dB) when numerous multi-relay 

nodes (diversity order) are present. Figure 7 indicates that 

the accuracy can be considerably reduced for large standard 

deviation occurring at any relay hop components when the 

proposed analytical derivations are employed. When the 

number of nodes (M) increases, the probability of achieving 

a high diversity gain increases; however, the approximation 

becomes slightly less accurate. Finally, the BER 

performance levels of the proposed analytical derivation 

were asymptotically tight with those of the exact solution 

and simulations when log-normal standard deviation 

constraints were applied. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Average BER on the 16QAM  vs. single hop
i  

with 

21
~~   =4 dB. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Average BER on the 16QAM  vs. single-hop 
i   

with 

21
~~   = 6 dB. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 7 Average BER on the 16QAM  vs. single-hop
i   

with 

1
~ =5 dB and 

2
~ =7 dB. 

 

VI. CONCLUSION 

In this paper, a simple and effective analysis framework 

was proposed for evaluating the performance levels of a 
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dual-hop multi-relaying system over composite fading. In 

particular, this paper presents analytical derivations of outage 

probability and BER performance levels, where closed-form 

expressions comprise the conditional constraint that relaying 

power is relatively large compared with the target threshold, 

based on the max-mini relay selection scenario. This relay 

power constraint consistently meets the performance 

expectation by using the proposed analytical closed-form 

expressions, where the low power region loses accuracy.  

This analysis framework is computationally efficient and 

promising for evaluating the shadowing effect and diversity 

gain. The Monte Carlo simulation results and exact solutions 

were compared regarding outage probability and BER 

performance levels, respectively; these showed asymptotic 

tightness to the approximations that used the analytical 

derivations. In all cases, the accuracy level decreased as the 

diversity order M or the standard deviation increased. 
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