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Abstract—One of the issues in data transfer between host 

CPU and its eMMC connected subsystem is to determine 

when to send data from host to subsystem and when to 

receive data from subsystem to host with least CPU 

interference. The conventional approach to achieving data 

transfer synchronization is by polling, which impacts CPU 

bandwidth and potentially affects the subsystem’s 

performance. This paper proposes an automatic two-way 

data transfer synchronization scheme that requires no 

involvement of host CPU in data transfer synchronization 

and offers real-time synchronization performance on 

subsystem side. (Abstract) 
Keywords-eMMC; subsystem; ECSS; DDR, ASRHA; ASR, 

synchronization; Input Buffer; Output Buffer 

I.  INTRODUCTION  

The eMMC specification [1] is designed for mobile 
devices and is capable of storing data and code.  It is 
intended to offer high data transfer bandwidth of 208MB/s 
when it runs at 104MHz frequency dual data rate (DDR) for 
large data transfers, while maintaining low power 
consumption. Advanced smart devices and handsets can use 
eMMC connected subsystems to expand computing power 
and content storage.  In this paper, an eMMC Connected 
Subsystem (ECSS) is connected to a host system via eMMC 
interface and conducts a functional task by receiving input 
from host system and outputting processed results back to 
host system.  Figure 1 demonstrates such an ECSS example 
of eMMC system that connects to Freescale iMX53 host 
system. 

II. STATEMENT OF PROBLEM 

ECSS applications range from high-end mobile devices 
 
 
 
 
 
 
 
 
 

 

that require high-definition video storage and extraction of 
advanced multimedia features, to embedded speech 
recognition systems that submit computationally intensive 
scoring tasks to ECSS for processing.  

One of such applications is hardware accelerator for 
Automatic Speech Recognition (ASRHA) engine. Without 
loss of generality, in the following sections, we will use 
ASRHA as an example to illustrate the proposed scheme in 
detail. In ASRHA, there are two FIFO buffers, one is input 
buffer (IB) and the other is output buffer (OB). Host system 
writes speech data to IB on ASRHA based on the following 
two criteria:  

 On host side, input data is generated by Automatic 
Speech Recognition (ASR) engine. 

  On ASRHA side, IB has enough space to receive 
input data. 

Similarly, host system retrieves processed data by 
ASRHA from OB based on:  

 On host side, buffer for receiving output data is 
available. 

 On ASRHA side, OB is not empty. 
 

On iMX53 platform, the Enhanced Secured Digital Host 
Controller Version 3 (ESDHCV3) provides an interface 
between the host system and the ECSS [2], as depicted in 
Figure 1. The ESDHC acts as a bridge, passing host bus 
transactions to the device by sending commands and 
performing data accesses to/from ASRHA. 

In ASRHA application, ASR engine off-loads most of its 
search job to ASRHA.  In doing so, it generates input list 
that needs to be transferred to IB on ASRHA chip from host 
frame by frame.   ASRHA accelerates the search phase of 
ASR by calculating HMM scores in addition to the distance 
scores by taking input list from ASR as input.  As a result,  

 
 
 
 
 
 
 
 
 

Figure 1.  An Example of  ECCS System 
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output list, created in the OB by ASRHA chip, is 

transferred to host for further processing via eMMC bus.   
To facilitate real-time speech recognition, input list and 

output list have to be transferred with least latency in order 
to ensure fast decoding of speech signals. How to 
synchronize the data transfer between host system and 
ASRHA will directly impact data transfer rate and host CPU  
load. As shown in Figure 2, ASRHA system could hang 
when a deadlock situation occurs.  This deadlock is caused  
by OB full in the midst of host writing to IB.  ASRHA will 
not be able to unload and process IB data if the results from 
the processing have no place to store due to OB full.    

Conventionally, the synchronization of data transfer is 
by polling, i.e., busy-and-wait approach. Specifically, the 
polling strategy can be explained below:  

 Before the host initiates an eMMC command to 
send input list to ASRHA chip, it first polls the chip 
to find out the size of available input buffer using 
one eMMC command (for instance, CMD17 (read 
single block)). If the desired buffer size is not 
available, it has to poll again until the buffer is 
available.  

 Similarly, when a host wants to read output list from 
ASRHA chip, it has to poll the chip to read the size 
of available output list. Multiple polls may be 
required before desired chunk size of output data is 
available.  Here, chunk size is multiple times of 
blocks size. 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Polling has been widely used in early computing system 

due to its simplicity. However, keeping polling will drain 
CPU power and lead to inefficiency in multitasking 
environments. Therefore, in recent systems interrupt-based 
notification mechanism has been used together with or 
replaced busy-wait approach on most occasions, especially 
for complex embedded systems for real time performance. 
For instance, in [3], a combined approach of polling and 
interrupt was investigated for message handling.  Another 
side effect for ASRHA is, if a host doesn’t poll ASRHA in 

time, ASRHA could either starve for input list or could stall 
because of OB full as shown in Figure 2.  

For applications like ASRHA, however, interrupt service 
is not available to inform host of subsystem status changes 
regarding the usage situation of input buffer and output 
buffer. Therefore polling is necessary.  

III. PROPOSED SCHEME 

It is important to reduce data transfer overhead and 
improve effective data bandwidth so the host processor can 
be freed for other application tasks. To address the above 
mentioned issues, automatic data transfer synchronization 
has been proposed based on the following considerations: 

 Utilize Ready/Busy mechanism provided by eMMC 
protocol to synchronize data transfer. 

 Absorb data transfer synchronization overhead on 
ECCS side. 

 Synchronize data transfer on ECSS side 

 Eliminate polling from host system, thus reduce CPU 
involvement in eMMC data transfer as much as 
possible. 

The proposal can be elaborated in the following two 
aspects, eMMC busy/ready control and device status return  
(R1) of eMMC commands.  

A. eMMC Busy/Ready 

The idea is instead of polling ASRHA for available 
buffer size or data size, host will send input list to ASRHA 
while  ASRHA  signals  device  BUSY  by pulling  D0   low  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

when IB has no free space of input data.  Only when the size 
of free IB for next transaction of IB data transfer meets a 
predefined threshold, it will remove BUSY signal and issue 
Ready signal.  In this case, the host only submits ONE 
 eMMC send multiple blocks command (CMD25) to 
ESDHC controller and it then goes to sleep to allow other 
tasks running until the arrival of controller notification when  
the command has been fully executed.  This approach 
enables the host CPU to work on other critical tasks.  More 
importantly, it prevents subsystem from hanging due to 
insufficient free IB buffer space when OB is full.   

Figure 2.  An Example of  ECCS System 
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What happens to the internal activity of the controller?  
After receiving an eMMC data Read/Write request, ESDHC 
controller first checks whether ASRHA is busy or not. If it 
is busy, the controller will wait until it is ready unless 
timeout occurs. Therefore, when the ESDHC controller 
finds out ASRHA is ready for receiving data, it will then go 
ahead to transfer input list data to ASRHA.  

B. eMMC Device Status 

Based on JEDEC eMMC standard 4.4 [2], most data 
transfer commands, such as CMD 25 (Write Multiple 
Blocks), CMD12 (Stop Transmission), have R1 type 
response, as shown in Table 1.  It means a 32-bit device 
status value will be returned to the host as the response to 
the eMMC command.  

TABLE I.  EMMC COMMAND RESPONSE TYPE 

CMD Description Response 

CMD 17 Read Single Block R1 

CMD 25 Write Multiple Block R1 

CMD 18 Read Multiple Block R1 

CMD 12 Stop Transmission R1 

 
Note that there are 8 reserved or unused bits in the status 

code. In addition, flash related error bits could be freed for 
application specific use as well.  eMMC DDR rate data 
transfer always ends at Stop Transmission command 
(CMD12). Applications such as ASRHA can send back 
application status, for instance, OB data size, to host system 
using the status code.   

IV. IMPLEMENTATION  

The key points with Input Buffer write is ASRHA will 
guarantee free IB space available for host next batch write 
operation, at the end of each chunk write, by asserting and 
deserting “Busy” signal to synchronize with host.  Since OB 
full will stall the activities of ASRHA, it should be 
prevented by sending Number of Available Output Blocks 
(NOB) via Device Status bits to host and host will give high 
priority to unload OB over writing to IB.  

Similarly, ASRHA enables a host  to read OB buffer one 
chunk at a time by asserting and deserting “Busy” signal to 
inform host whether it is ready or not.   

A. ASRHA State Transition Table for IB Write 

As shown in Table II, T1, the threshold for free space in 
IB and T2, the threshold for available data size in OB, are 
predetermined and can be tuned by applications.    

ASRHA State 1 could transition to one of three different 
states after giving Busy signal as output. In this state, NOB 
is below watermark T2 and IB need increase free space for 
next incoming IB chunk by enabling Busy signal. In the 
middle of the increasing, NOB can grow as well and hit 
watermark T2. When either IB_free (free space in IB) 
growing enough or NOB hitting watermark, Busy can be 
turned off.   
 

TABLE II.  ASRHA STATE TRANSITION TABLE FOR IB WRITE 

State 

# 
  

Current State Next State Output 

IB_free

> T1 

NOB > 

T2 

IB_free> 

T1 
NOB > T2 Busy 

1 

0 0 1 0 1->0 

0 0 0 1 1->0 

0 0 1 1 1->0 

2 0 1 0 1 0 

3 1 0 1 0  0 

4 1 1 1 1 0 

 

B. ASRHA State Transition Table for OB Read 

As shown in Table III, T1, the threshold for free space in 
IB and T2, T3, the thresholds for available data size in OB, 
are predetermined and can be tuned by applications.    

During OB read, free space in IB still needs to be 
examined to ensure next transaction of IB write is safe. 
Therefore IB_free is part of current state for OB read 
besides NOB for OB. 

TABLE III.  ASRHA STATE TRANSITION TABLE FOR OB READ 

State 

# 
  

Current State Next State Output 

NOB

< T3 
IB_free

 > T1 

NOB

>T2 

NOB

< T3 
IB_free

 > T1 

NOB

>T2 
Busy 

1 

0 0 0 0 1 0 1->0 

0 0 0 0 0 1 1->0 

0 0 0 0 1 1 1->0 

2 0 1 x 0 1 x 0 

3 0 0 1 0 0 0 0 

4 1 x x 0 x x 1->0 

 
Table III lists current state and next state to transition to 

when outputting Busy as output. The next state will be same 
as current state if no Busy is set.   At ASRHA State 1, NOB 
needs increase. However, before OB read finishes, we have 
to make sure IB has space for next input chunk. When this 
happens, sending input is not done yet. Therefore set Busy 
until IB_free is greater than a predefined value T1 or NOB 
hits watermark T2. State 2 and State 3 transition to the same 
states without setting Busy signal.  

In ASRHA State 4, if NOB is below the watermark T2, 
Busy signal is activated to increase NOB until NOB < T3 is  
not true. When ASRHA is in this state, it indicates host 
finished sending input data and starts reading OB data.  

 

V. EXPERIMENTAL RESULTS 

The experiments are conducted on a Freescale iMX6 
SABRE board running ARM® Cortex® A9 processor, 
which is connected to an Altera FPGA board that 
implements ASRHA logic. The host system is a speech 
recognition engine that outsources HMM search task to 
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ASRHA.  The average data transfer rate is around 
60MB/second with eMMC data transfer chunk size of 10KB.  

In our experiments, the average polling occurrence is 
around 1.6 polls to each transferred input data chunk when 
using the conventional polling approach.   

Our main concerns here are system CPU load and  
eMMC data transfer bandwidth [4-6].  

First, let us look at CPU load. It shows 20% CPU load 
when polling is used to synchronize data transfer between 
CPU and ASRHA, as opposed to 16% CPU load using 
proposed Non-polling approach, which is 25% improvement.  

Second, assuming 10% of the cases require extra polling 
and 10KB per chunk for eMMC data transfer, in a multi-
tasking environment, delay is added between polling so 
other tasks can run as well in the meantime. Given 300us for 
the delay between polling, the proposed data transfer 
scheme speeds up data transfer rate by 18% compared to the 
polling approach.  

VI. DISCUSSIONS 

In the above sections, the proposed data transfer 
synchronization scheme has been discussed. The proposal is 
motivated by the idea of streamlining data read and write 
with least host CPU participation.  The benefit can be 
summarized below: 

 First, the automatic two-way data transfer 
synchronization turns ECSS accesses into a simple reliable 
read/write operation. In other words, by hiding the 
complexity of ECSS technology, an easy interface to host 
system has been provided. This will enhance data transfer 
capability and shorten the development cycle and time to 
market.  

Second, the host system workload has been reduced by 
outsourcing the data transfer synchronization task to ECSS.  
Least CPU involvement means higher system efficiency and 
faster responsiveness. 

(Spansion®, the Spansion logo, and combinations thereof, are 
trademarks and registered trademarks of Spansion LLC in the 
United States and other countries.  ARM and Cortex are registered 
trademarks of ARM Limited.  Other names used are for 
informational purposes only and may be trademarks of their 
respective owner.)   
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