
A New Data Transfer Scheme for eMMC Connected

Subsystems

Shulan Deng, Ph.D

System Software Engineering

Spansion Inc.

Sunnyvale, CA, USA

Shulan.deng@spansion.com

Abstract—One of the issues in data transfer between host

CPU and its eMMC connected subsystem is to determine

when to send data from host to subsystem and when to

receive data from subsystem to host with least CPU

interference. The conventional approach to achieving data

transfer synchronization is by polling, which impacts CPU

bandwidth and potentially affects the subsystem’s

performance. This paper proposes an automatic two-way

data transfer synchronization scheme that requires no

involvement of host CPU in data transfer synchronization

and offers real-time synchronization performance on

subsystem side. (Abstract)
Keywords-eMMC; subsystem; ECSS; DDR, ASRHA; ASR,

synchronization; Input Buffer; Output Buffer

I. INTRODUCTION

The eMMC specification [1] is designed for mobile
devices and is capable of storing data and code. It is
intended to offer high data transfer bandwidth of 208MB/s
when it runs at 104MHz frequency dual data rate (DDR) for
large data transfers, while maintaining low power
consumption. Advanced smart devices and handsets can use
eMMC connected subsystems to expand computing power
and content storage. In this paper, an eMMC Connected
Subsystem (ECSS) is connected to a host system via eMMC
interface and conducts a functional task by receiving input
from host system and outputting processed results back to
host system. Figure 1 demonstrates such an ECSS example
of eMMC system that connects to Freescale iMX53 host
system.

II. STATEMENT OF PROBLEM

ECSS applications range from high-end mobile devices

that require high-definition video storage and extraction of
advanced multimedia features, to embedded speech
recognition systems that submit computationally intensive
scoring tasks to ECSS for processing.

One of such applications is hardware accelerator for
Automatic Speech Recognition (ASRHA) engine. Without
loss of generality, in the following sections, we will use
ASRHA as an example to illustrate the proposed scheme in
detail. In ASRHA, there are two FIFO buffers, one is input
buffer (IB) and the other is output buffer (OB). Host system
writes speech data to IB on ASRHA based on the following
two criteria:

 On host side, input data is generated by Automatic
Speech Recognition (ASR) engine.

 On ASRHA side, IB has enough space to receive
input data.

Similarly, host system retrieves processed data by
ASRHA from OB based on:

 On host side, buffer for receiving output data is
available.

 On ASRHA side, OB is not empty.

On iMX53 platform, the Enhanced Secured Digital Host
Controller Version 3 (ESDHCV3) provides an interface
between the host system and the ECSS [2], as depicted in
Figure 1. The ESDHC acts as a bridge, passing host bus
transactions to the device by sending commands and
performing data accesses to/from ASRHA.

In ASRHA application, ASR engine off-loads most of its
search job to ASRHA. In doing so, it generates input list
that needs to be transferred to IB on ASRHA chip from host
frame by frame. ASRHA accelerates the search phase of
ASR by calculating HMM scores in addition to the distance
scores by taking input list from ASR as input. As a result,

Figure 1. An Example of ECCS System

Platform (imx53)

ASR Engine Host

Controller
/ESDHC

eMMC

e

ASR

OB

ASRHA

Logic Device Controller

IB

Figure 1. An Example of ECCS System

International Conference on Computer Science and Service System (CSSS 2014)

© 2014. The authors - Published by Atlantis Press 424

output list, created in the OB by ASRHA chip, is

transferred to host for further processing via eMMC bus.
To facilitate real-time speech recognition, input list and

output list have to be transferred with least latency in order
to ensure fast decoding of speech signals. How to
synchronize the data transfer between host system and
ASRHA will directly impact data transfer rate and host CPU
load. As shown in Figure 2, ASRHA system could hang
when a deadlock situation occurs. This deadlock is caused
by OB full in the midst of host writing to IB. ASRHA will
not be able to unload and process IB data if the results from
the processing have no place to store due to OB full.

Conventionally, the synchronization of data transfer is
by polling, i.e., busy-and-wait approach. Specifically, the
polling strategy can be explained below:

 Before the host initiates an eMMC command to
send input list to ASRHA chip, it first polls the chip
to find out the size of available input buffer using
one eMMC command (for instance, CMD17 (read
single block)). If the desired buffer size is not
available, it has to poll again until the buffer is
available.

 Similarly, when a host wants to read output list from
ASRHA chip, it has to poll the chip to read the size
of available output list. Multiple polls may be
required before desired chunk size of output data is
available. Here, chunk size is multiple times of
blocks size.

Polling has been widely used in early computing system

due to its simplicity. However, keeping polling will drain
CPU power and lead to inefficiency in multitasking
environments. Therefore, in recent systems interrupt-based
notification mechanism has been used together with or
replaced busy-wait approach on most occasions, especially
for complex embedded systems for real time performance.
For instance, in [3], a combined approach of polling and
interrupt was investigated for message handling. Another
side effect for ASRHA is, if a host doesn’t poll ASRHA in

time, ASRHA could either starve for input list or could stall
because of OB full as shown in Figure 2.

For applications like ASRHA, however, interrupt service
is not available to inform host of subsystem status changes
regarding the usage situation of input buffer and output
buffer. Therefore polling is necessary.

III. PROPOSED SCHEME

It is important to reduce data transfer overhead and
improve effective data bandwidth so the host processor can
be freed for other application tasks. To address the above
mentioned issues, automatic data transfer synchronization
has been proposed based on the following considerations:

 Utilize Ready/Busy mechanism provided by eMMC
protocol to synchronize data transfer.

 Absorb data transfer synchronization overhead on
ECCS side.

 Synchronize data transfer on ECSS side

 Eliminate polling from host system, thus reduce CPU
involvement in eMMC data transfer as much as
possible.

The proposal can be elaborated in the following two
aspects, eMMC busy/ready control and device status return
(R1) of eMMC commands.

A. eMMC Busy/Ready

The idea is instead of polling ASRHA for available
buffer size or data size, host will send input list to ASRHA
while ASRHA signals device BUSY by pulling D0 low

when IB has no free space of input data. Only when the size
of free IB for next transaction of IB data transfer meets a
predefined threshold, it will remove BUSY signal and issue
Ready signal. In this case, the host only submits ONE
 eMMC send multiple blocks command (CMD25) to
ESDHC controller and it then goes to sleep to allow other
tasks running until the arrival of controller notification when
the command has been fully executed. This approach
enables the host CPU to work on other critical tasks. More
importantly, it prevents subsystem from hanging due to
insufficient free IB buffer space when OB is full.

Figure 2. An Example of ECCS System

Unable to write due to OB
Full

System
Stalls

Send Data
Chunk

Host
Controller

CPU

IB

OB

ASRHA

Device
Controller

eMMC
Bus

Busy/Ready
Control due
to IB full

Unable to Read
IB

Data Write
Pause Due to
IB Full

CPU Needs to
Unload OB

425

What happens to the internal activity of the controller?
After receiving an eMMC data Read/Write request, ESDHC
controller first checks whether ASRHA is busy or not. If it
is busy, the controller will wait until it is ready unless
timeout occurs. Therefore, when the ESDHC controller
finds out ASRHA is ready for receiving data, it will then go
ahead to transfer input list data to ASRHA.

B. eMMC Device Status

Based on JEDEC eMMC standard 4.4 [2], most data
transfer commands, such as CMD 25 (Write Multiple
Blocks), CMD12 (Stop Transmission), have R1 type
response, as shown in Table 1. It means a 32-bit device
status value will be returned to the host as the response to
the eMMC command.

TABLE I. EMMC COMMAND RESPONSE TYPE

CMD Description Response

CMD 17 Read Single Block R1

CMD 25 Write Multiple Block R1

CMD 18 Read Multiple Block R1

CMD 12 Stop Transmission R1

Note that there are 8 reserved or unused bits in the status

code. In addition, flash related error bits could be freed for
application specific use as well. eMMC DDR rate data
transfer always ends at Stop Transmission command
(CMD12). Applications such as ASRHA can send back
application status, for instance, OB data size, to host system
using the status code.

IV. IMPLEMENTATION

The key points with Input Buffer write is ASRHA will
guarantee free IB space available for host next batch write
operation, at the end of each chunk write, by asserting and
deserting “Busy” signal to synchronize with host. Since OB
full will stall the activities of ASRHA, it should be
prevented by sending Number of Available Output Blocks
(NOB) via Device Status bits to host and host will give high
priority to unload OB over writing to IB.

Similarly, ASRHA enables a host to read OB buffer one
chunk at a time by asserting and deserting “Busy” signal to
inform host whether it is ready or not.

A. ASRHA State Transition Table for IB Write

As shown in Table II, T1, the threshold for free space in
IB and T2, the threshold for available data size in OB, are
predetermined and can be tuned by applications.

ASRHA State 1 could transition to one of three different
states after giving Busy signal as output. In this state, NOB
is below watermark T2 and IB need increase free space for
next incoming IB chunk by enabling Busy signal. In the
middle of the increasing, NOB can grow as well and hit
watermark T2. When either IB_free (free space in IB)
growing enough or NOB hitting watermark, Busy can be
turned off.

TABLE II. ASRHA STATE TRANSITION TABLE FOR IB WRITE

State

Current State Next State Output

IB_free

> T1

NOB >

T2

IB_free>

T1
NOB > T2 Busy

1

0 0 1 0 1->0

0 0 0 1 1->0

0 0 1 1 1->0

2 0 1 0 1 0

3 1 0 1 0 0

4 1 1 1 1 0

B. ASRHA State Transition Table for OB Read

As shown in Table III, T1, the threshold for free space in
IB and T2, T3, the thresholds for available data size in OB,
are predetermined and can be tuned by applications.

During OB read, free space in IB still needs to be
examined to ensure next transaction of IB write is safe.
Therefore IB_free is part of current state for OB read
besides NOB for OB.

TABLE III. ASRHA STATE TRANSITION TABLE FOR OB READ

State

Current State Next State Output

NOB

< T3
IB_free

 > T1

NOB

>T2

NOB

< T3
IB_free

 > T1

NOB

>T2
Busy

1

0 0 0 0 1 0 1->0

0 0 0 0 0 1 1->0

0 0 0 0 1 1 1->0

2 0 1 x 0 1 x 0

3 0 0 1 0 0 0 0

4 1 x x 0 x x 1->0

Table III lists current state and next state to transition to

when outputting Busy as output. The next state will be same
as current state if no Busy is set. At ASRHA State 1, NOB
needs increase. However, before OB read finishes, we have
to make sure IB has space for next input chunk. When this
happens, sending input is not done yet. Therefore set Busy
until IB_free is greater than a predefined value T1 or NOB
hits watermark T2. State 2 and State 3 transition to the same
states without setting Busy signal.

In ASRHA State 4, if NOB is below the watermark T2,
Busy signal is activated to increase NOB until NOB < T3 is
not true. When ASRHA is in this state, it indicates host
finished sending input data and starts reading OB data.

V. EXPERIMENTAL RESULTS

The experiments are conducted on a Freescale iMX6
SABRE board running ARM® Cortex® A9 processor,
which is connected to an Altera FPGA board that
implements ASRHA logic. The host system is a speech
recognition engine that outsources HMM search task to

426

ASRHA. The average data transfer rate is around
60MB/second with eMMC data transfer chunk size of 10KB.

In our experiments, the average polling occurrence is
around 1.6 polls to each transferred input data chunk when
using the conventional polling approach.

Our main concerns here are system CPU load and
eMMC data transfer bandwidth [4-6].

First, let us look at CPU load. It shows 20% CPU load
when polling is used to synchronize data transfer between
CPU and ASRHA, as opposed to 16% CPU load using
proposed Non-polling approach, which is 25% improvement.

Second, assuming 10% of the cases require extra polling
and 10KB per chunk for eMMC data transfer, in a multi-
tasking environment, delay is added between polling so
other tasks can run as well in the meantime. Given 300us for
the delay between polling, the proposed data transfer
scheme speeds up data transfer rate by 18% compared to the
polling approach.

VI. DISCUSSIONS

In the above sections, the proposed data transfer
synchronization scheme has been discussed. The proposal is
motivated by the idea of streamlining data read and write
with least host CPU participation. The benefit can be
summarized below:

 First, the automatic two-way data transfer
synchronization turns ECSS accesses into a simple reliable
read/write operation. In other words, by hiding the
complexity of ECSS technology, an easy interface to host
system has been provided. This will enhance data transfer
capability and shorten the development cycle and time to
market.

Second, the host system workload has been reduced by
outsourcing the data transfer synchronization task to ECSS.
Least CPU involvement means higher system efficiency and
faster responsiveness.

(Spansion®, the Spansion logo, and combinations thereof, are
trademarks and registered trademarks of Spansion LLC in the
United States and other countries. ARM and Cortex are registered
trademarks of ARM Limited. Other names used are for
informational purposes only and may be trademarks of their
respective owner.)

ACKNOWLEDGMENT

The author would like to thank System Software Team at
Spansion for making this publication possible.

REFERENCES

[1] JEDEC Solid State Technolgoy Assocation, “Jedec Standard,

JESD84-A44, MMCA 4.4” Multimedia Card Assocation, March 2009.

[2] Eureka Technology, EP568 eMMC 4.5 Card Controller datasheet

[3] O. Maquelin, G. R. Gao, H. HJ Hum, K. B. Theobald, “Polling
Watchdog: Combing Polling and Interrupts for Efficient Message
Handling”, ICSA’s 96 Proceedings of the 23rd Annual Internal
Symposium on Computer Architecture, May 1996.

[4] M. Loukides, “System Performance Tuning”, O’Reilly & Assocates,
Inc, 1991.

[5] H. Liu, “Software Performance and Scalability: A Quantitative
Approach”, John Wiley & Sons, Sep 20, 2011.

[6] A. S. Tanenbaum, “Operating Systems: Design and Implementation”,
Prentice-Hall, Inc., Upper Saddle River, NJ, 1987.

427

