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Abstract—In the paper, a cascade predictive control strategy is 
proposed for the hydraulic AGC (Automatic Gauge Control) 
system of hot rolling mills based on the data driven control 
theory to solve the problem of inaccurate indirect 
measurement and long time-delay direct measurement. 
Because of the influence of disturbance and uncertainties, 
press DAGC (Dynamic Automatic Gauge Control) secondary 
loop control system is added to monitor AGC main loop 
control system. The proposed method can improve the 
control precision and ability of disturbance rejection. 
Simulation results show that the control strategy is effective 
and has a better control performance.  

Keywords- data driven; predictive control; automatic gauge 
control 

I.  INTRODUCTION  
Automatic gauge control of hot rolling mills is 

completed by multi stands. The gauge control of hot strip 
finishing mills is an important process of the iron and steel 
industry, and the quality and qualified rate are decided by 
automatic control level directly. The highly-complex control 
system presents a challenge for the controller design, which 
is exacerbated by the hostile hot metal rolling environment. 
Various control strategy has been used in the field to 
improve control performance [1-2].To meet the requirement 
of the automatic gauge control system and improve the 
product yield, the generic solution of the steady state error 
in the spring equation was provided in [3]．Limitations of 
traditional AGC were analyzed, based on the spring 
equation, and an H-infinity filter was introduced into the 
forward-feedback loop of AGC to reject the disturbances [4]. 
However, to improve control precision both press AGC 
control and feedforward AGC control need high precision 
measured value. In [5], a cascade control scheme was 
proposed for the AGC system based on the smith prediction 
control model. A practical active disturbance rejection 
control (ADRC) solution was proposed for the monitoring 
automatic gauge control (AGC) system with large time-
delay in the hot strip mills [6]. Employing a linear reduced-
order model with optimized parameters, the practical ADRC 
was simple to use, easy to tune and energy efficient in 
dealing with the uncertainties and disturbances. 

In the paper, a cascade control scheme is proposed for 
the AGC system based on the data driven control theory to 

improve control precision and robust. The paper is 
organized as follows. Section 2 presents a description of the 
automatic gauge control system of hot strip mills, and 
cascade control strategy is presented, where both monitor 
automatic AGC and press DAGC control system are used. 
Based on predictive control theory a data driven controller is 
designed using subsystem identification method in section 3. 
In section 4, we present some simulation results to 
demonstrate that the proposed control method is effect and 
feasible. Conclusions and future work are given in section 5. 

 

II. DESCRIPTION OF AGC SYSTEM 
Because we can’t get actual thickness of the steel 

between the roll gaps, press AGC is used widely. Using 
rolling force and gauge value detected directly, we can 
calculate the thickness of steel in time with the spring 
equation. However, the product can’t meet the requirement 
due to its poor accuracy, because of effects of parameter 
uncertainty and disturbance such as roll eccentricity and oil 
film thickness changes, etc. So monitor AGC control 
strategy is used to feedback actual thickness value with 
detectors fixed after the rear finishing stands about 4-6 
meters away. So the actual thickness data can’t be used in 
time and the influence of the time-delay is obviously.  

In the paper, both DAGC and monitor AGC are used to 
improve control performance, where the DAGC secondary 
loop control system is added to the monitor AGC system, as 
shown in fig.1. 
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Fig.1 Block diagram of DAGC and monitor AGC 

Where p1( )G s is the integration transfer function of 

automatic position control system; 1( )G s is controller 
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designed for monitor AGC; f
1(1 )K

Ts
+ is the transfer 

function of monitor AGC; SΔ , PΔ and hΔ  is increment of 
gauge, press and thickness, respectively; *SΔ is gauge 
increment for hΔ ; M and Q is stiffness coefficient of 
rolling mill and plasticity coefficient of steel; e-τs is time 
delay part. 

From fig. 1, we can see that it is a cascade control 
system and we can design controller for DAGC system and 
monitor AGC system, respectively. As shown in fig. 2 a 
data driven controller is designed for the monitor AGC main 
loop control system, and controller can be designed directly 
based on input and output data, and the process of model 
identification is avoided. The PID control strategy is applied 
to the secondary loop control system. With the secondary 
loop control system, disturbances added in the secondary 
loop are rejected in advance, and the influence of 
disturbances on the main control loop is weakened. 

  
Fig.2 Block diagram of AGC cascade control system  

Where ( )G s is press AGC control system; r is 
reference input; 1 2ε εΔ Δ， is external disturbance; C(s) is 
controller for monitor AGC system. 

 

III. DATA DRIVEN CONTROLLER DESIGNING 

A. Subspace Identification 
A liner time invariant state space system can be described 

as[8]: 
( 1) ( ) ( ) ( )k k k k+ = + +x Ax Bu Kv              （1） 
( ) ( ) ( ) ( )k k k k= + +y Cx Du v                  （2） 

Where ( )ku , ( )ky and ( )kx are the process inputs, outputs 

and states, respectively; A,B,C,D and K are appropriate 

dimension matrices; ( )kv is white noise sequence. We 

assumed that ( )A,B is controllable and ( )A,C is 

observable, it can be obtained by recursive substation of (1) 

into (2) 

f f f f= +Y X H UΓ or p p p p= +Y X H UΓ
 
(3) 

Where the subscript p and f denote “past” and “future”. 

The measurements of the inputs and outputs ( )ku  

and ( )ky  for { }0,1, ,2 2k N j∈ + −L  are available. The data 

block Hankel matrices for ( )ku  represented as pU and 

fU with i-block rows and j-blocks columns are defined as 
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 Where the outputs block Hankel matrices fY and pY are 

defined in the same way. 
In the case when no noise is present, the actual future 

outputs fY lies in the combined row space and the linear 
predictor equation can be written as  

f p f
ˆ = +w uY L W L U

                          
（4）

 
Where 

TT T
p p p= ⎡ ⎤⎣ ⎦W U Y and fU are the past inputs and 

outputs and future inputs, respectively, wL and uL are 
subspace matrices corresponding to the states and inputs. By 
solving the following least-square problem, the outputs 
prediction f̂Y can be extracted  

2
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The orthogonal projection of the row space of fY into the 
row pW  and fU , and wL , uL can be obtained via QR 
decomposition. 
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where“ †” denote the Moore-Penrose pseudo-inverse.

           

 
 

B. Controller Designing 
For the time instant k, using the future 

inputs [ ]1, ,f k k N+ −= Lu u u , [ ]1, ,p k N k− −= Lu u u and past 

outputs [ ]1, ,p k N ky y− −= Ly ,we can get the future 
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outputs [ ]1ˆ ,ˆ ˆ,f k k N+ −= Ly yy ， and the prediction 
expressions of the outputs can be written as  

ˆ f w P u f= +y L w L u                          （8） 
That is 
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The cost function to be minimized becomes 

T

1

1
T

0
T T

ˆ ˆ( ( ) ( )) ( ( ) ( ))

( ) ( )

ˆ ˆ( ) ( )

p

c

H

i
i

H

i
i

f f f f f f

J k i k i k i k i

k i k i

=

−

=

= + − + + − +

+ + +

= − − +

∑

∑

r y Q r y

u Ru

r y Q r y u Ru

(10) 

Where pH and cH denote the predictive horizon and control 
horizon, respectively. r  are reference inputs. The output and 
input weighting matrices ( )1 0

pHdiag= >LQ Q Q and 

( )1 0
cHdiag= ≥LR R R .To find the minimum of J, its 

derivative is set to zero 

0
f

J∂
=

∂u
                                 (11) 

The control law are therefore defined as 
T 1 T( ) ( ) ( )u u u w pk −= + −u R L QL L Q r L W

             
 (12)

 
and only the first control law is used to the system at time k. 
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IV. SIMULATION RESULTS 
In this section, we will use the simplified second order 

transfer function from the engineering practice to illustrate 
the performance of the proposed control strategy. 
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We set control horizon 2cH = ; predictive horizon 
4PH = ; sampling time is 5ms; and input disturbance 

1 0.08sin(12 90) 0.04cos(24 ) 0.008t tεΔ = + + +  as shown  in  fig. 3. 
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Fig. 3 Input of disturbance   

0 100 200 300 400 500 600
-0.05

0

0.05

0.1

0.15

0.2

time / ms
A

m
pl

itu
de

 

 

Output of cascade control system
Output of data driven control system

 
Fig. 4 Output of the system 
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Fig. 5 Output of the system with disturbance  

Fig. 4 compares the outputs of the control system of 
two control strategy. it can be seen that, we can get better 
control effects using cascade control strategy compared with 
data driven control strategy alone, where second looper PID 
control, we set parameter values P=80, I=0.4. In addition, 
we can improve performance by setting different value of 
PID parameter. Fig.5 compares inputs of control system of 
two control strategy. In summary, the disturbance rejection 
and control precision can be improved using cascade control 
strategy.  

V. CONCLUSIONS 
In the paper, we design cascade control strategy for 

automatic gauge control system, where we design data 
driven controller for main loop monitor AGC system as well 
as PID controller for secondary loop DAGC system. The 
PID second loop control system can reject disturbance in 
advance, and reacts quickly and able to compensate the 
disturbance faster compared to the data driven control 
system. Furthermore, based on data driven control theory, 
the model identification process is avoided and control 
precision and performance is improved. Simulation results 
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show the efficiency and feasibility of the proposed control 
strategy.  
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