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Abstract 
This paper adds genetic algorithm (GA) to Linear 
Quadratic Regulator (LQR) and presents a new 
optimal control method-GALQR. The GALQR control 
method uses GA to optimize the weight matrices of 
LQR and adopts the divisional removing searching 
mechanism to insure getting the global optimal results. 
The method was applied to design the control 
schedules of the Active Suspension System. 
Comparing with the experiential LQR, the results 
show the GALQR can increase the possibility of 
finding the optimal weight matrices and make the 
system gain better design performances. 
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1. Introduction 
Linear Quadratic Regulator (LQR) is an optimal 
control method with the quadratic performance 
indexes and these indexes have specific physical 
concepts generally [1]-[2]. At the same time, LQR has 
simple math disposal process and can achieve closed 
loop optimal control with the linear state feedback or 
output feedback [3]-[5]. LQR has been applied in 
engineering widely [6]-[10]. 

The selection of weight matrices in LQR is very 
important and it straight affects the control effect. In 
general, the weight matrices are set by engineers, who 
need be familiar with the controlled system [11]-[13]. 
Reference [14] applied LQR to design the control law 
of the Active Suspension System (ASS). The weight 
matrices were set by experience first and then were 
adjusted by simulation till obtaining the satisfying 
output responses. To this process, if the designer 
known poor about the system, the optimal weight 
matrices could not be obtained and so the control 
performances also could not be optimal. 

The genetic algorithm (GA) is a highly efficient 
and robust search algorithm based on evolution in 
nature [15]-[17]. GA has been widely used to evolve 
good solutions to hundreds of different problems [18]-
[20]. 

The purpose of this paper is to propose a new 
optimal control method, which is called GALQR 
(Genetic Algorithm Linear Quadratic Regulator), 
through adding the GA to the LQR for optimizing the 
weight matrices of LQR. GALQR is expected to 
overcome the shortcoming of general LQR. The paper 
is organized as follows. In section 2, the concept of 
LQR optimal control method is expounded. In section 
3, the idea of GALQR design method is illuminated 
and the steps for realizing GALQR are introduced.  In 
section 4, the GALQR is applying to the design of 
control laws for the ASS. In section 5, the contrasting 
results of the optimization in two different methods 
(the GALQR and the experiential LQR) are presented. 
In section 6, some concludes are given. 

2. Lqr optimal control  
The LQR is an optimal control method for the linear 
system. In this section, the basic design process for 
LQR will be illuminated.  

Suppose the state equation of the controlled 
system is as follow: 

0 0

( ) ( ) ( )
( ) ( )

( )

t t t
t t

t

= +⎧
⎪ = +⎨
⎪ =⎩

&x Ax Bu
y Cx Du
x x

                                 (1) 

and the performance index is given by: 
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where Q, R and N are the weigh matrices, Q is required 
to be positive definite or positive semi-definite 
symmetry matrix, N is required to be positive definite 
symmetry matrix. 
        If the system described by (1) is controllable 
completely, the control method which makes (2) 
achieving minimum is called Linear Quadratic 
Regulator.  

Using (2), the correctional Riccati matrix 
equation can be obtained: 

T -1 T- ( ) ( )PA+ QA P PB + N NR PB + N + Q = 0          (3)   



By solving (3), matrix P can be obtained and if it 
is positive definite, the system will be steady and the 
optimal feedback vector K and the optimal control 
variable u(t) are gained:  

-1 T T( + )K = R B P N                             (4) 

( ) = - ( )u t Kx t                                       (5) 

For LQR control problem, the weigh matrices in 
the performance index have a great influence on the 
control effects. In general designs, the weigh matrices 
are set based on the physical process by experience. In 
order to achieve the better control performances, the 
engineer need be very familiar with the controlled 
system. 

3. Galqr optimal control method  
In this section, GA will be used to optimize the weight 
matrices of LQR and the optimal control method is 
called GALQR. The main idea of the GALQR is to 
utilize the random searching ability of the GA to find 
the optimal weight matrices and so the improvements 
of the design efficiency and the design performances 
are expected.  

The GALQR retains the basic structure of the GA: 
coding, selection, crossover, mutation. For the 
problem in this paper, whereas the value ranges for 
weight matrices Q and R are quite wide, the divisional 
removing searching mechanism is adopted in the 
general GA to enhance the searching efficiency and 
the searching precision. 

 The basic ideas for the divisional removing 
searching mechanism: the searching space is divided 
into some small searching spaces (the amount of the 
small searching spaces is set based on the searching 
efficiency and the searching precision), and then the 
GA operation with constraints is applied in every 
small searching space. The space in which there is no 
chromosome satisfying constraints to be found within 
appointed searching times will be removed.  

The basic design process for the GALQR optimal 
control method is as follows:  

Step 1. Coding: The binary code is adopted and 
the main aim of the coding is to obtain the binary code 
digit correspond to the decimal parameter. For the 
parameters of weigh matrices Q and R, the 
corresponding binary code digits are gained according 
to the ranges and the precision demands of the 
parameters. Suppose the range of parameter qi is 
[

iqL ,
iqU ] and the precision demand is ε , then the 

binary code digit
iqB  for qi is obtained as follow: 

2[log (( ) / )]
i i iq q qB U L ε +∞= −                     (6)  

When the binary code digits for all parameters 
have been obtained using (6), the whole chromosome 
digit B is obtained: 
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where [·]+∞ denotes rounding to positive infinitude, 
iqB  

(i=1~n1) and 
jrB (j=1~n2) are the binary codes for the 

weigh matrix Q and R respectively, n1 and n2 are the 
amount of parameters included in Q and R respectively. 

Step 2. Dividing Searching Space: Here will bring 
the GA with two parameters as an example to 
illuminate the process for dividing. Suppose the range 
of parameter qi is [

iqL ,
iqU ] and the divided space 

number is
iqm ; the range of parameter qj is [

jqL ,
jqU ] 

and the divided space number is
jqm . Then the whole 

searching space is divided into 
i jq qm m⋅ small searching 

spaces. For the amount of small searching spaces is 
increasing by times with the number of parameters, the 
searching time also will be increasing by times. So the 
GALQR will be applied in the design problem with 
the number of the design parameter under four. 

 The small spaces are numbered and the searching 
domain numbers for all parameters in every small 
searching space are registered in a matrix, e.g. the 
matrix M below is for the problem with two 
parameters above. 

1 1 1
2 1 2

i j

i j i j

q q

q q q q

k k k

m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⋅⎣ ⎦

M M M

M M M

M  

Thereinto, the first column is the numbers of the 
searching spaces and the second and the third column 
are the searching domain numbers of the parameter qi 
and qj respectively.  

According to the matrix M, in the kth searching 
space, the searching domain numbers of the parameter 
qi and qj are 

iqk and
jqk respectively. Thereby, the value 

domain in the kth searching space for the parameter qi 
is counted as following equations: 
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where qi

i

k
qL and qi

i

k
qU are the lower limit and the upper 

limit of value domain of the parameter qi in the kth 



searching space. The count for the value domain of the 
parameter qj is just the same. 

Step 3.Creating initial Group: In the ith searching 
space, suppose the scale of the group is Ps and the 
whole chromosome digit is B, then the Ps individual 
chromosomes in the form of the binary code will be 
produced as an initial group using the random method. 

Step 4.Checking Design Constraints: All 
chromosomes in the ith searching space will be 
checked to ensure if they satisfy the design constraints. 
Here carries out the Step3 and step4 three times for the 
exact judgment. Through the constraint checking, if 
there is no chromosome satisfying constraints to be 
found in the searching space, the removing sign will 
be set and the operation will transfer to Step8, or 
transfer to Step5. 

Step 5.Selection: For chromosomes satisfying the 
constraints in the ith searching space, the fitness 
selection principle is adopted to obtain next generation 
chromosomes. To the LQR problem, the fitness 
selection principle is as follow: 

First, the decode operation which transforms the 
binary code to the decimal code will be applied to 
chromosome bi. Suppose bi is composed of N design 
variables and the kth variable contains nk binary bits, 
and its decimal value range is [

i

k
bL ,

i

k
bU ], then the 

decode operation for the kth variable is as follow: 
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where Ki is the ith code digit of the kth variable. Using 
(9), all parameters of weigh matrices Q and R can be 
decoded.  

  Next, through solving (3), the optimal feedback 
vector K and the optimal control variable u(t) can be 
obtained, and then the closed loop optimal control 
system can be formed by the state linear feedback and 
the output ( )tx is also obtained. 

Suppose the fitness function of GA is denoted by 
fga=f(b) and the fitness for the chromosome bi is f(bi), 
when the number of chromosomes satisfying the 
constraints is Nc, then the reproduced number for the 
chromosome bi is counted as follow: 
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Equation (10) shows that the reproduced number 
of the chromosome is in direct proportion to its fitness. 

Step 6.Crossover: Crossover operation will face to 
the all chromosomes in the ith searching space. During 
the crossover operation, the position for crossover is 
random selected and the operation is carried out 
between two selected chromosomes by crossover 
probability Pc. 

Step 7.Mutation: To the group produced by the 
crossover operation, according to the gene mutation 
principle in the biology, the mutation operation is 
carried out at some bits in the selected chromosomes 
by mutation probability Pm. During the operation, the 
bit required to mutate is reversed: 1 to 0 and 0 to1. In 
order to increase the global search ability of GA, here 
the mutation probability Pm will be increasing along 
with the evolution process: 
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where
0mP is the initial mutation probability, mE is the 

total epoch, nE is the current evolution epoch. 
Step 8. If the searching space number i is less than 

the current total space number, 1i i= + and the 
operation will transfer to Step3, or transfer to Step9. 

Step 9.Judging to Stop: If the current evolution 
epoch is less than the total epoch, the space with the 
removing sign will be eliminated from the searching 
domain and the total space number is updated. At the 
same time, the number i is set to be 1 and the 
operation will transfer to step3, or stop the GALQR 
operation and output the results. 

Fig. 1 is corresponding to the theory of GALQR 
above. From the process of realizing GALQR, it is 
shown that the space dissatisfying the constraints will 
not be contained in the next circle recurring to the 
divisional removing searching mechanism and so 
GALQR has the ability of globally wide search and 
locally careful search. Thereby, the GALQR can 
ensure to obtain the optimal weight matrices and make 
the controlled system get the better performances. In 
the next section, the GALQR control method will be 
applying to the control law design for the ASS and the 
superiorities will be shown. 
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Fig. 1: Process of GALQR optimal control. 
 

4. Applying of galqr in the active 
suspension system 



4.1. Dynamic model for the active 
suspension system  

 In this paper, the quarter vehicle model is adopted 
(see Fig. 2) and the dynamical model is as follow [21]: 
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where mb is the mass of the quarter vehicle, mw is the 
unsprung mass, xb is the displacement of the vehicle 
body, xw is the displacement of the wheel, xr is the 
disturbance of the road; ks and cs are the stiffness and 
damp of the suspension, kt is the stiffness of the wheel, 
U is the control force. 
 

 Vehicle 
body

Wheel

cs ks
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U

xb

xw
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(mb)

(mw)

 
 

Fig. 2: Quarter vehicle model. 
 

 Select the state variable x as [ bx& , wx& ,xb-xw, xw-xr]T, 
the control variable u as control force U and the 
disturbance w as velocity disturbance rx& of the road, 
then the state equation of the system can be obtained: 

     
&x = Ax + Bu + Gw
y = Cx + Du

                             (13) 

where, 
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It can be proved that the system described by (13) 
is controllable [22] and so GALQR can be used in this 
system. In the next step, we will design the control law 
for the Active Suspension System using GALQR. 

4.2. Optimal Control Design for the 
ASS Using GALQR 

Main performances for evaluating the comfort and the 
security of a vehicle are the vertical acceleration of the 
vehicle body, the dynamic deflection of the suspension 
and the dynamic deflection of the tire. At the same 
time, in order to decrease the energy depletion of the 
ASS, the control force input also is taken into account. 
Thereby, the quadratic performance index is selected 
as: 
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      Using (13), equation (14) can be transformed into 
following form: 
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where Q=CTQpC, R2=DTQpD, N=CTQpD, Qp=diag(q1, q2, 
q3), R1=1, R=R1+R2.  
       It is shown that if matrix Qp has been obtained, the 
weigh matrix Q, R, N and the matrix P can be 
calculated using (15) and (3) separately. Thereby, the 
optimal feedback vector K and the optimal control 
force U are gained using (4) and (5). 
        Here, the optimized parameters are selected as 
q1,q2 and q3 and the performance evaluation function 
is as follow: 

1 2 3
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                            (16) 

where 1ψ , 2ψ and 3ψ are the Root Mean Square (RMS) 
of the vertical acceleration of the vehicle body, the 
dynamic deflection of the suspension and the dynamic 
deflection of the tire for the ASS separately. 

b
1ψ , b

2ψ and b
3ψ are the RMS of the Passive Suspension 

System (PSS) relative to 1ψ , 2ψ and 3ψ  separately. 
 From (16), it is shown that the evaluation 

function is standardized by the RMS of PSS, which 
makes the amount level of every index accordant and 
achieves the uniform optimization for indexes. 
Thereby, the fitness function for GA operation can be 
set as fga=1/fev. 

Considering the performances of ASS must be 
better than PSS firstly and the dynamic deflection of 
the suspension is restricted by the structure of the 
vehicle, constraints for the divisional removing 
searching mechanism are selected as: 
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where df is the dynamic deflection of the suspension, 

dlimf is the allowable limit of df . 

5. Results 
Through the analysis in section 4, the model for 
designing the optimal control law for the ASS using 
the GALQR has been set up. Next, the design 
operation will be done and the contrasts between the 
GALQR and the experiential LQR will be presented. 

The design parameters for the GALQR are 
selected as: search domains for q1, q2 and q3 are [1, 108] 
likewise; ε =1×104; Ps=30; Pc=0.7; 

0mP =0.1. The 
dynamical parameters [2] of the vehicle are selected as: 
mb＝300kg; mw＝49kg; ks＝1.7×104N/m; cs＝1317N·s/m; kt

＝  2×105N/m; fdlim=0.06m. The road conditions are: 
driving velocity is 20m/s, the road is made up of rank 
B and C with the road undulation coefficient 64×10-

6m2/m-1 and 256×10-6m2/m-1 separately.  
     Using GALQR, the optimal weight vector is obtain
ed: q=[3823.3, 9.9563×107, 9.3502×107]. Comparing b
etween the results by the GALQR and those by the ex
periential LQR [2] is done (see Table 1).  
 

[3823.3, 9.9563× 7, 9.3502×107]10 [600, 1×105, 2×106]

0.98145 1.0088

5.6933 6.6953

7.7304 9.114

Object

q

RMS_A (m/s2)

RMS_SD(×10-2m)

RMS_TD(×10-3m)

GALQR LQR[2]

 
Table 1: RMS Results by GALQR and LQR. 

 
From Table 1, it is shown that all performance 

indexes have been improved using the GALQR 
method in contrast to the experiential LQR method. 
The Root Mean Square (RMS) of the vertical 
acceleration of the vehicle body is decreased 2.71%, 
and the RMS of the dynamic deflection of the 
suspension and the RMS of the dynamic deflection of 
the tire are decreased 14.97% and 15.18% respectively. 

The contrasts between two design methods about 
the Power Spectrum Density (PSD) of the vertical 
acceleration of vehicle body, the dynamic deflection of 
the suspension and the dynamic deflection of the tire 
are also shown in Fig. 3 to Fig. 5 separately. 

   From Fig. 3 to Fig. 5, it is shown that comparing 
with LQR, PSD values of the vertical  acceleration of 
the vehicle body and the dynamic deflection of the 
suspension at the inherent frequency of the vehicle 
body (f0=1.2Hz) have decreased distinctly, which will 
improve the comfort of the vehicle. The PSD value of 
the dynamic deflection of the tire only has a slight  
decrease at f0 and it still makes an improvement on the  
handling and stability of the vehicle. Within the range 
of intermediate frequency and high frequency, PSD 

results between two methods almost are coincident, 
which shows that control performances of two 
methods approximately are same in this frequency 
range. 
 

 
LQR   GALQR 

Fig. 3: Acceleration PSD of vehicle body. 
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Fig. 4: Dynamic deflection PSD of suspension. 
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Fig. 5:  Dynamic deflection  PSD of  tyre. 

Frequency (Hz) 

D
yn

am
ic

 D
ef

le
ct

io
n 

PS
D

 o
f S

us
pe

ns
io

n 
(m

2 ) 
A

cc
el

er
at

io
n 

PS
D

 o
f V

eh
ic

le
 B

od
y 

(m
2 •s

-4
) 

Frequency (Hz) 

Frequency (Hz) 

D
yn

am
ic

 D
ef

le
ct

io
n 

PS
D

 o
f T

ire
 (m

2 ) 



6. Conclusion 
In this paper, GA was added to LQR and a new 
optimal control method-GALQR was formed. 
Comparing with the experiential LQR method, 
GALQR method has several advantages as follows: 

1)  GALQR decreases the requests to the designer 
and the designing process is done automatically. The 
design efficiency is improved obviously. 

2) GALQR method uses GA to optimize the 
weight matrices of LQR, which will increase the 
possibility of finding the optimal weight matrices and 
make the system gain better design performance. 

Though only the improvement on LQR is 
illustrated in this paper, the design idea can be 
extended to other optimal control method, such as 
Linear Quadratic Gauss (LQG) method, which needs 
to be studied ulteriorly. 
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