
Objected-Oriented Analysis in the Application of
Simulative Transformer Substation System

Cuiru Wang Jiang Jiang
 Department of Computer Science, North China Electric Power University, Baoding 071003, P. R. China

Abstract
As more challenging applications are automated,
solving cooperative problem will be an important
paradigm for the next generation of industrial intelli-
gent systems. One of the key problems to use it in
engineering domain is development of a structured
design method. In this paper, an evolutionary,
seamless, non-domain-specific object-oriented analy-
sis (OOA) method is derived that starts at the
definition of a software system and integrated
knowledge engineering needs in a new manner,
especially when following a deep knowledge approach.
Based on this proposed method, an expert-supported
OOA tool environment (ESA) is presented that
supports an analyst starting at the collection of the
requirements through the analysis of any software
system. And an example of simulative transformer
substation system (STSS) is introduced to present
some key problems and techniques of OOA up to a
preliminary high-level design.

Keywords: Transformer substation system, Objected-
oriented analysis, Expert-supported, Knowledge engi-
neering

1. Introduction
Object orientation is not only a programming
technique but a much more sophisticated approach
towards engineering in general, and both software
engineering and knowledge engineering in particular.

The main advantages of object-oriented
technology are the universal homogeneity and the
reusability of its results. The term "universal
homogeneity" denotes that object-oriented technology
is a much more general and universal approach to
software development than the conventional method of
software development. It turns out that the single steps
in software development move much closer together
with much more interaction among them. Thus the
necessary feedback is established much earlier, and a
more homogeneous and seamless development
without error-prone gaps after each step is possible.

Compared to conventional software development, less
transformation of results is needed to get a suitable
input for the next step, and the development process is
much more evolutionary [1].
 The reusability of the results of object-oriented
technology means using what already exists to achieve
what is desired. Reuse is not limited to algorithms,
libraries or interface specifications but is enabled on
entire applications, application frameworks and
objects. Reuse at object level occurs in two different
forms: refining an object via inheritance to obtain a
new object and using existing objects in the
composition of a new object [2].

2. Design method of ESA system
based on software engineering

2.1. The main part of the OOA
Most of current application systems are very large and
complex. Such a complex system’s design is iterative
and improved process. Summarily, the main part of
the OOA system can be showed in Figure1.

When considering the entire method, it must be
kept in mind that this is not a straightforward process
but an iterative one with many loops and repetitions of
single or multiple steps. Nor is it a sequential process
in the sense that step n must be executed before
step 1+n . However, it is the basic process towards an
evolutionarily developed object-oriented analysis. It is
also very useful to discuss preliminary results with the
expert of the domain [3] and to integrate this new
feedback at the next iteration.

The whole process results in a conceptual model,
a specification of the system integrating the static,
dynamic and epistemic knowledge of the analyzed
domain. In the case of software engineering, this
output is a direct input (without any transformation) to
the phase of software design, which must not
necessarily follow an object-oriented approach,
although it is quite recommendable, as it already
anticipates a great portion of an object-oriented high-
level design. However in the case, of knowledge

engineering, the output can also serve as a profound
basis containing all the relevant information of the
analyzed domain. It includes the elements of the
domain, its components, its behavior and the
relationships among the elements; it is the necessary
input of an expert system.

Fig.1: process of new OOA method.

The advantages of the presented method, which
aim at the shortcomings of existing OOA methods and
considers knowledge engineering needs, consist of the
following points:

• Integration of all essential object-oriented
features

• Incorporation of behaviour in an extensive
way

• Support of an entire tool environment because
methods are more valuable for practitioners

• Homogeneous transition to OOD and OOP
• Participation of users and domain experts

during the entire process, as it is a rather
pragmatic and intuitive approach

• Integration of knowledge engineering aspects

2.2. Using the salient features of
ESA at an OOA process

After the general preparations for an analysis are
executed, the domain of discourse is defined, and the

application is understood on a high level, ESA offers a
very effective way of beginning. Starting with a
simple textual requirements definition, which is
usually available in an informal, natural, language and
is saved in a file, ESA can generate a text analysis
report including a list of candidates for objects,
attributes and methods.

When working without an electronic dictionary,
which can identify nouns, verbs, etc., candidates for
objects, methods and attributes should be identified by
style attributes (bold, italic or outline). Studies have
shown, however, that it is better to select the
candidates manually than with an electronic dictionary.
First, a better understanding of the problem is gained
and, second, as the use of a dictionary does not include
or consider any semantics, all possible candidates are
selected without any preselection, resulting in an
immense number of candidates.

When selecting any object candidate, an object
will be created on the OOA workbench, or when an
attribute or method candidate is selected, it will be
added to the currently activated object, which is
displayed highlighted. However, this can be done
during the entire analysis process and can also be
executed for parts of a textual description. This idea is
based on the concerns described in [4], and should
help to structure any badly defined domain of the
particular problem.

Of course, it is also possible to create new
objects by using the object creation tool and to specify
their behaviour and to identify and structure their
components. In order to take advantage of and to reuse
already analyzed and specified objects, ESA offers the
possibility to include objects already defined in an
object repository and to import objects from source
text (e.g., an application framework or a former
project that is stored using an object-based or object-
oriented language). Thus this feature essentially
improves the reuse of objects and object hierarchies.

After these initial steps the next process will take
place. An analyst has to identify behaviour by filling
in the lower left sub window, classify objects, and
identify structure by using the inheritance tool. To
reduce complexity, it is advisable to create graphical
super objects [5].

When the process of analysis is almost finished,
the final component, the expert supporting component
of ESA should be activated to analyze and criticize the
model. The analysis investigates all components of an
object like a compiler. It checks whether all object
names are unique, whether all attribute names are
defined and whether all attribute interfaces, all
constraints and all behaviours are specified correctly.
And the more expert-based part checks the structure of
the attributes and methods within the object hierarchy.
If a disadvantageous arrangement is detected,
warnings and hints to rearrange it will be generated.

Also, the magnitude and the consistency of an object
will be analyzed in a heuristic way to produce
necessary warnings.

3. An example of simulative transf-
ormer substation

Transformer substation is an important department of
electric power system. The operators of such system
must be capable of managing the system both under
normal conditions and in the presence of system
malfunctions. Their ability to diagnose faults and take
appropriate corrective actions promptly is highly
desirable. But the complex and dangerous features of a
transformer substation make it impossible to train
operators on real equipment. Therefore developing
simulative transformer substation is an effective way
for training operator. It simulates the electrical
network, user interface, and power system behaviour.
The operator's skill will be enhanced with the
sophisticated training environment. It may also be
used for operator evaluations, engineering studies,
power system model evaluation, and offline testing of
energy management system functions and operational
procedures.

Computer-based training systems for operators
and dispatches have witnessed steady progress since
the early 1980s [6]. Building such a system deals with
a set of complex tasks, such as the control of input and
output devices, load flow calculation, diagnosis of
faults and abnormal events, and so on. Therefore an
integrated and distributed problem solving architecture
seems to be a good choice.
(1) Requirement Analysis

The aim to develop simulative transformer
substation is to improve operator's operator’s skill and
his faults' and abnormal events' diagnosis ability.
Generally, the system should include the following
functions:

• to collect switch status and supervise netwo-
rk's change;

• to identify and diagnose faults and abnormal
events;

• to calculate load flow under both fault and
normal conditions;

• to display the electric network status through
computer graphic interface and meters in real-
time;

• to have a friendly user interface so that
instructor can set up fault and abnormal events;

• to simulate various of fault and abnormal
phenomena;

(2) System Overall Composition
STSS is a large complex system which combines

physical simulation with computer digital simulation.
It has the same look and feel as the real-time system,

from both the user interface and system response
perspectives. Therefore system model is based on not
only its overall performance, but also the environment
constrains. For example, input and output of the sys-
tem should reflect their change of status logic, that is,
system must be of ability of real-time input and output.
In addition, in order to facilitate the instructor to set up
faults and abnormal events, there must be a user
interface agent. It presents the instructor with a
graphical display representing the electric network
status. It is mouse-driven and uses pull-down menus
for ease of use [7].

Fig.2: overall composition of STSS.

The fault diagnosis and fault restoration tasks
which consume a lot of time should be performed by
special agents. Therefore the system is composed of
four main agents: real-time processing (RT), user
interface(UI), fault diagnosis(FD), and fault restor-
ation(FR). Figure2 shows the overall composition of
STSS.
(3) Agent Model

According to the STSS’s characters, we propose
an agent model (see Figure 3), which has three layers
They are interaction layer, cooperation and control
layer, and problem solving layer. Each layer has
several modules with different functions.

Fig.3: Architecture of an agent.

.a Interaction layer
 The interaction layer is composed of perception
handler and communication handler. The former is the
agent’s interface to user or environment, and the latter
is the interface to other agents. Agent uses the
perception handler to interact with environment or
user such as collecting electric equipment status or
receiving instruction from instructor. Communication
handler is used to receive message from or send
message to other agents.

.b Cooperation and control layer
The cooperation and control layer is composed of

four main modules, a blackboard and a model base.
The model base includes the models of other

agents and itself, which is the main information source
for agent to decide what tasks should be performed
locally, determine when social activity is appropriate,
and whom it will interact with, and so on.

The blackboard is a shared memory for domain
problem solvers and the modules in cooperation and
control layer. It includes information about agent’s
local problem solutions, status, plan, goal, etc.

The event detector is an independent
computation process and normally runs as a
background process. It is triggered by the messages
from either the interaction layer or the planning model.
It is also responsible for coding and decoding the
messages.

The planning model is agent’s kernel. It is
responsible for translating the abstract goals into a
sequence of concrete goals and planning agent’s local
and social activities, such as cooperative, coordinate
and negotiated activities, according to the information
in model base and on blackboard.

The conflict resolution module is responsible for
recognizing and resolving the conflicts among
distributed heterogeneous cooperating agents.
Negotiation, which is a very important issue in the
domain of OOA, is used as a strategy for resolving
conflicts. In ESA, there are three conflict types:
knowledge conflict, constraint conflict, and perception
conflict. Each conflict is resolved with a different
negotiation strategy.

The control module is the interface to the prob-
lem solving layer. It is used to control and manage the
activities of domain problem solving.

.c Problem solving layer
The problem solving layer is composed of a set

of modules which relate to different domain problem
solving tasks. Each module has its own knowledge-
base and inference engine and can solve a special
domain problem.
(4) Task Decomposition and Allocation

In STSS, each agent performs a class of
performance. Real-time processing agent is respon-
sible for the real-time tasks such as system's input and
output, network calculation, and fault simulation, etc.

User interface agent facilities instructor to interact
with system. Fault diagnosing and fault restoration
agents deal with complex and consuming time fault
processing tasks.

After determining system's overall composition,
next step is task decomposition and allocation among
agents. There are two types of equipment in the
simulative transformer substation. One is controller,
and the other is protective relay. While controller can
be further divided smaller units, such as generator,
transformer bus, transmission line, etc. According to
the hierarchy decomposition relationship, some of
tasks can also be divided into several smaller subtasks.

For example, we decompose fault diagnosis task
into three subtasks, and combine case-based reasoning
with conventional problem solving paradigms. The
first one is used for determining the blackout area
based on dynamic variable with respect to network
topology and breakers' status. The second one is used
for determining fault equipment based on the fault
rules of power equipment. And the last one is used for
determining the fault components based the case with
respect to protective relay. The diagnostic result of
one level is the input of its next level. The diagnostic
range is progressively reduced until the fault
component is found. The relationships of these tasks
are shown in Figure. 4.

Fig.4: The relationships of fault diagnosis tasks.

(5) Multi-Agent Coordination and Cooperation

Coordinating the activities of multiple problem
solvers is widely regarded as the central problem of
OOA research. A number of approaches to coordin-
ation have been developed. They have ranged from
very statically-defined models to models that can
dynamically change with environments. In engineering
application domain, choosing between coordination
mechanisms for a particular application is a matter of
system design. There is no universally best approach.
Which method is chosen to achieve the balance
between stability and flexibility is very important. Ge-
nerally three mechanisms which are common in OOA
are: organizational structuring, exchanging meta-level
information, and multi-agent planning. we adopt a
two-level-priority-based asynchronous communication
approach which combines organizational structuring
with exchanging meta-level information methods to
realize the coordination among agents. For the
interactions with respect to different functions, we
statically define their priorities according to their

important extents. For example, diagnosis message
which real-time processing agent receives from
diagnosis agent is prior to setting message from user
interface agent. While for the interactions which
belong to a certain function and change with the
environment, their priorities are calculated
dynamically according to their urgent extents. For
example, when multiple faults occur simultaneously,
since one fault under different environment conditions
has different urgent extents and it is difficult for fault
simulation module to determine its order in the fault
set, therefore, this dynamic process, which deals with
a lot of complex knowledge about logical relationship
between environment condition and fault, is processed
by fault diagnosis module is more suitable than by
fault simulation module [see Table 1]. We call the
former the first level priority and the latter the second
level priority.

Table.1: Messages exchanged among agents.

Agents in the cooperative problem solving
system incoming messages in its communication
handler to be executed. Generally, there tow disjoints
types of messages, one is strictly used in
communicative acts for initiating actions, and the other
is used in response to former acts. Selecting which one
to execute first is important for cooperative problem
solving. In STSS, it is according to message's two
level priorities.
 In STSS, a message is composed of two divisions,
head and body. For example, the format of a fault
message is:

(�����
head

pnpmid ,,, ��� ���� ��
body

typetionname ,sec,)

Where id is the fault identifier; pm is the first
level priority; pn is the second level priority; name
is the name of fault; tionsec is the fault section;
type is the fault type.

When there are two messages, such as A and B ,
in the communication handler of real-time processing
agent waiting to be executed, the following three cases
should be considered:

Case1: BA idid ≠
Case2: BA idid = and BA pmpm =
Case3: BA idid = and BA pmpm ≠
In case 1, because the identifiers of A and B

are not equal, the function of message A is different
from that of B and their first priorities must be
unequal. The message that has bigger pm value will
be first executed.

In case 2, because both id and pm values of
message A and B are equal, the senders of message
A and B are from the same agent. The message that

has bigger pn value will be first executed.
In case 3, because message A and B have the

same id value and different pm values, they come
from different agents. After processing the message
that has bigger pm value, the current environment,
which may have been changed by the execution of
this process, should be checked so as to determine if it
can satisfy the requirement of another message which
has been not executed. If environment satisfies the
requirement, then execute the second message
otherwise abandon it and inform its sender.

4. Conclusions
The main intention of this work is to offer a practical
approach to OOA and knowledge engineering to
support both with a complete tool environment and an
example is introduced. Further research is planned in
the following directions: Refinement of the method
with knowledge engineering features; Improvement
and extension of the expert supporting component of
ESA; Integration of a facility that simulates the
behaviour of objects to enhance the dynamic aspects
of the system; Expansion of the ESA tool to a full
programming environment, supporting OOA, OOD
and both programming and debugging; Adaptation of
the objects to standardized objects, as intended by
groups like the OMG (Object Management Group), in
order to cooperate with objects of different origin.

References

[1] P.L.George, M. A.Nicholas, and K P.George,
Development of distributed problem solving
system for dynamic environments. IEEE
Transactions on System and Cybernetics,
18:400-414, 2005.

[2] R.J. Abbott, Program design by informal English
descriptions. Communications of the ACM,
103:882-894, 2003.

[3] B. Alabiso, Transformation of data flow analysis
models to object-oriented design. Theory and
Praxis, 42:335-353, 1998.

[4] L. Gasser, An over view of object-oriented
analysis. Theory and Praxis, 37:9-29, 2002.

[5] R.J. Nick, Controlling cooperative problem
solving in multi-agent systems using joint
intentions. Artificial Intelligence, 46:195-240,
2005.

[6] P. Desbiens, Design and operation of a virtual
reality operator-training system. IEEE Transce-
nds on Power Systems, 96:1585-1591, 1996.

[7] W. Mettrey, A comparative evaluation of expert
system tools. Computer, 26:19-31, 2001.

