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Abstract  
We propose a multicategory classifier, that is, 
Multicategory Nonparallel Proximal Support Vector 
Machine (MNPSVM), which is in the spirit of 
Proximal SVMs via Generalized Eigenvalues 
(GEPSVM). Difference from GEPSVM lie in: 1) 
MNPSVM keeps the genuine rather than approximate 
geometrical interpretation of the nonparallel proximal 
SVMs; 2) each nonparallel plane of MNPSVM is 
generated by its corresponding standard eigenvalue 
problems, instead of nowadays generalized eigenvalue 
problems. The effectiveness is demonstrated by tests 
on synthetic and real data sets. Furthermore, we also 
discuss its efficiency in experiment section and 
conclude that MNPSVM is far higher than that of both 
GEPSVM and SVM. 
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1. Introduction 
Standard support vector machines (SVMs) [1] are 
based on the structural risk minimization (SRM) 
principle and aim at maximizing the margin between 
the points of two-category data classification and then 
assign those points to one of disjoint half-space in 
either the original input space for linear classifiers, or 
in a higher feature space for nonlinear classifiers. In 
recent times, some much simpler classifiers, such as 
proximal support vector machine (PSVM) [2] and 
LSSVM [3], were implemented wherein each class of 
points is assigned to the closet of two parallel planes 
that are pushed apart as far as possible. Recently, 
kicking of the parallel constrains of the PSVM, 
Mangasarian and Fung proposed a nonparallel plane 
classifier [4]. The classifier attempts to seek two 
nonparallel planes and requires that each plane should 
be close to data points of one class and far from the 
data points of the other class. With this intuition, each 

plane is generated by an eigenvector corresponding to 
a smallest eigenvalue of each of the generalized 
eigenvalue problems. For computational complexity, 
SVM requires a solution of either a quadratic or linear 
programs, and PSVM leads to a single system of linear 
equations. In contrast, GEPSVM is obtained by 
solving a generalized eigen-equation.  

Due to the simplicity of GEPSVM algorithm, in 
this paper, we apply this 2-category classifier to 
construct C-category classification by using a one-
against-the-rest separation for each class [5]-[6]. In 
essence, GEPSVM is derived by a generalized 
eigenvalue problem through minimizing a kind of 
Rayleigh quotient. For the two real symmetric 
matrices appearing in GEPSVM criterion, if both are 
nonpositive definite (singular), an ill-defined operation 
will be yielded due to floating-point imprecision. So, 
GEPSVM adds a perturbation to one of the singular 
(or semi-definite positive) matrix and the authors 
claimed that this perturbation acts as a regularization 
term. Furthermore, FMGEPSVM [7] is a direct 
extension of GEPSVM through introducing a fuzzy 
membership into classifier construction. However, 
such multicategory method is still puzzled by foresaid 
problems. To keep the genuine but not approximate, 
geometrical interpretation of the nonparallel plane 
classifier, a different regularization trick is adopted to 
adjust the tradeoff between classes of the given data 
points. So, the proposed multicategory classification 
method need NOT to care about the singularity of the 
foresaid matrices in Rayleigh quotient due to adoption 
of a similar formulation to the Maximum Margin 
Criterion [8] (MMC), but it is worthwhile noting that 
MMC just is a dimensionality reduction method rather 
than a classification method. By the way, the proposed 
classifier also is easy to extend to its fuzzy version 
with similarly introducing fuzzy membership as 
described in [9]. 

The rest of this paper is organized as follows. In 
Section 2, we review some basic work about 
GEPSVM. The proposed approach will be appeared in 



section 3. In Section 4, we provide the experimental 
results on some artificial and public datasets. Finally, 
we offer our conclusion in Section 5. 

2. A brief review on GEPSVM 
algorithm 

To motivate our multicategory approach, we begin 
with the brief description of two-class GEPSVM [4] 
algorithm, which has been proved to be an effective 
approach for binary classification.  

Given a training set of two pattern 
classes ( ) ( ) ( ) ( )
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dimensional patterns in the ith class. Throughout the 
paper, superscript “T” will denote transposition, and 
“e” is a case-dependent dimensional column vector 
whose entries are all ones. Denote the training set by a 
N1×n matrix A (Ai is the ith row of the matrix A
corresponding to the ith pattern in Class 1) and the 
N2×n matrix B (Bi is the ith row of the B, the ith pattern 
in Class 2), respectively. The GEPSVM attempts to 
seek two planes in n-dimensional input space 
respectively corresponding to the two classes: 
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where the two non-parallel planes are closest to the 
points in its own class and as far from the points in the 
other one as possible. This leads to the following 
optimization problem: 
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where δ is a nonnegative regularization factor, and ||.|| 
denotes the two-norm. By making the definitions: 

G: = [A e]T[A e] + δI ,
H: = [B e]T[B e],   z: =[wT r]T

(3) 
then, with respect to the first plane of (1), formula (2) 
becomes: 
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where G and H are positive semi-definition matrices 
when δ =0. Formula (4) can be solved by the 
following generalized eigenvalue problem 

G z = λ H z, z ≠ 0 (5) 
The global minimum of (4) is achieved at an 
eigenvector of the generalized eigenvalue problem (5) 
corresponding to the smallest eigenvalue when G or H
in eq (5) is a positive definite matrix, so in many real-
world cases, regularization factor δ must be set to a 
positive constant, especially in some Small Size 
Sample (SSS) problems where the number of training 
samples is far less than the dimensionality of the 
samples. The 2nd plane can be obtained with a similar 
process. 

To extend this binary classifier to be applicable for 
multicategory classification, we redefine C-class 
patterns as the following: ( ) ( ) ( ) ( )
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3. The multicategory nonparallel 
proximal support vector machine 
(MNPSVM) 

With the similar geometric objective, i.e., each plane 
should be closer to the data points of its own class and 
be farther to the data points of the other class, the goal 
of MNPSVM is to estimate C planes that can be well 
approximated under some constraints by the points of 
C classes. We first focus on a linear mode. Then, for 
nonlinear case, we extend those linear methods to 
corresponding nonlinear ones with the help of kernel 
tricks [10]. 

3.1. Linear MNPSVM 
Assume C linear planes in n-dimensional space 

: { | 0, }, 1, 2, ,T n
i i iP b R i C= + = ∈ =x w x x � (6) 

where iw is normal vector and ib is the threshold of 
the linear plane iP . We hope that the points in the ith 
class are as close to their corresponding plane iP as 
possible and as far from the other 
planes ( 1, , , )lP l C l i= ≠� as possible. The 
optimization criterion and constraints can be defined 
to determine those planes as follows: 
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where iη (>0) is a tradeoff factor. Under minimizing 
objective (7) and constraint (8), the first term of (7), 
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of the ith class must be close to the plane iP . The 
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that the points of the jth ( , 1,2, ,j i j C≠ = � ) class 
must be far from iP .

Further simplifying formulas (7) and (8), we 
obtain the following: 
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columns consist of the patterns of the rest C-1 classes, 
i.e., 1 1 1[ , , , , , ]i i i C− +=A A A A A� � . Constant matrix 
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Define Lagrange multipliers function L based on 

the objective function (9) and equality constraints (10) 
as follows: 
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Setting the gradients of L equal to zero gives the 
following optimality conditions: 
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i i i i i i i iη λ− =A A A A w Bw� � (12) 

It is obvious that the matrix B is singular. To 
overcome this singularity, we decompose the eq. (12) 
into two expressions as below 
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where iX is composed of the patterns of the ith class, 
and iX , the patterns of the rest C-1 classes. As 
aforementioned definition, ie and ie are case-
dependent column vector with all elements are ones,  

1,2,i C= � . N means total number of the given C-class 
patterns. Thus, the planes just generate from their 
corresponding standard eigenvalue problems. Next, we 
turn to the nonlinear case. 

3.2. Nonlinear MNPSVM 
In real world, the problems encountered can not 
always be handled using linear methods. For making 
our method able to accommodate nonlinear cases, we 
will extend it to nonlinear MNPSVM with well-known 
kernel trick [10]-[11]. For convenience of description, 
we define Empirical Kernel Map (for more details 
please see [11]-[12]) as follows: 
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where 1( ) [ ( , ), , ( , )]T
emp NK k k=x x x x x� , and 

1, , ,2 Nx x x� are aforesaid N training samples. 
Function ( , )k x y stands for an arbitrary kernel, for 

any n-dimension vector x and y, which maps the 
vector x and y into a real number in R. A frequently 
used kernel in nonlinear classification is Gaussian 
kernel with the expression defined as 

2( , ) exp( || || )k γ= − −x y x y  , where γ is a positive 
constant. 

Similarly, we consider the following C kernel-
generated nonlinear planes instead of the 
aforementioned linear ones (6) 
 ( ) ( ) 0i T
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With an entirely similar argument, we consider 

the following optimization criterion instead of the 
original one in the input space as (7) and (8). 
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where ( )iu and ib denote the normal vector and the 
threshold of the ith plane K

iP in the space NR ,
respectively.  

With the similar manipulation, we have the 
following C eigen-systems: 
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In what follows, we turn to our experimental tests 

and some comparisons. 

4. Experimental validations and 
comparisons 

In order to test the MNPSVM classification capability, 
we perform some experiments on one artificial data set 
and some benchmark datasets from the UCI 
Repository [13]. 

4.1. Illustration on a toy problem 
On the artificial problem, a synthetic data set, termed 
as “multiple cross planes (MultiPlanes)”, is designed 
to visually illustrate the effectiveness of our 
MNPSVM compared to GEPSVM. The “multiple 
cross planes” consists of four-class points. Those 
points in the same class are close to one of four cross 
planes in R2. Fig.1 illustrates their distributions of the 



data and the four planes generated by MNPSVM and 
GEPSVM, respectively. 

 

(a) MNPSVM 

(b) GEPSVM 
Fig.1: The “multiple cross planes” learned by MNPSVM and 
GEPSVM. The figures illustrate the multiple linear planes 
generated by MNPSVM (a) and GEPSVM (b). 
 

In this paper, when using binary classifiers 
GEPSVM and SVM for multi-class classification 
problem, one-against-the-rest approach will be 
adopted. The “multiple cross planes” consists of four 
lines which are crossed each other (see Fig1). It is 
obvious that “multiple cross planes” is a further 
example of the XOR problems. In this case, the 
learning correctness of GEPSVM deteriorates greatly, 
though it is better than that of the SVM on the 
example “cross planes” in [4]. However, it is 
undoubted that the training set correctness for 
MNPSVM is 100% in the examples of “multiple cross 
planes”. Why does GEPSVM work so poor in this 
example? The reason may be due to that: 1) after 
regularization, GEPSVM has lost its original 
geometrical interpretation; 2) each plane of GEPSVM 
is generated by all training points with one-against-all 
technique such that GEPSVM has to face unbalanced 
classification problem. 

After illustrating the toy problem, we are in a 
position to carry out several experiments on some real-
world data sets which are available at [13]. 

4.2. Test accuracy on public data 
sets 

To demonstrate the performance of our approach, we 
report our results on some public UCI datasets. Table 
1 shows a linear kernel comparison of DMPSVM 
versus GEPSVM and SVM (SMO algorithm [14-15] 
for binary classification and one-against-all for 
multiclass SVM [16]). For a linear kernel, MNPSVM, 
GEPSVM and SVM have a single parameter: η for 
MNPSVM, δ for GEPSVM and C for SVM. Similar 
to [16], the parameters are selected from the values 
{10i | i = -7,-6,…,7} by using 10% percent of each 
training fold as a tuning set. In addition to report the 
average testing accuracies across the 10 folds, we also 
perform the paired t-test comparing GEPSVM to 
MNPSVM and SVM to MNPSVM. The p-value for 
each test is probability of the observed or a greater 
difference between two test accuracy values occurring, 
under the assumption of the null hypothesis that there 
is no difference between the test accuracy distributions. 
Thus, the smaller the p-value, the less likely that the 
observed difference resulted from identical test 
accuracy distributions. A typical threshold (confidence 
level) for p-values is 0.05. For example, in data set 
MultiPlanes, the p-value of the test comparing 
MNPSVM and SVM is 0.000, which is less than 0.05, 
leading us to conclude that MNPSVM and SVM have 
different accuracies on this data set. In table 1, the p-
values are from t-test comparing GEPSVM and SVM 
to MNPSVM. Best accuracy results are in bold. An 
asterisk (*) denotes a significant difference from 
MNPSVM based on p-values less than 0.05. 

 
Data set 

m×n
Classes 

MNPSVM
Accuracy 

GEPSVM
Accuracy 
p-value 

SVM 
Accuracy 
p-value 

Iris 
150×4 

3C 

92.7% 91.3% 
0.678 

94.2% 
0.134 

Sonar 
208×60 

2C 

74.1% 68.4% 
0.208 

74.35% 
0.174 

Cmc 
1473×8 

3C 

52.0% 48.4% 
0.286 

49.8% 
0.408 

Ionosphere 
351×34 

2C 

85.1% 84.0% 
0.785 

86.1% 
0.773 

MultiPlanes 
400×2 

4C 

93.5% 41.2%* 
0.000 

25.0%* 
0.000 

Table 1: Linear Kernel Classifiers MNPSVM, GEPSVM 
and SVM 10-Fold Testing Correctness/Accuracy and p-
values.  
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Table 2 gives MNPSVM, GEPSVM and SVM 
using Gaussian kernel. The Gaussian kernel parameter 
σ is chosen from the values {10i | i = -4,-3, …, 3, 4} 
for all the three algorithms. The parameters, ηi (i
=1,2,…,C) for  MNPSVM, δ for GEPSVM and C
(tradeoff factor) for SVM, are respectively selected 
from the set {10i | i = -6,-5, … , 3, 4}. From Table 2, 
as expected, we note that nonlinear MNPSVM greatly 
outperforms nonlinear GEPSVM and SVM on the 
MultiPlanes data set. 

 
Data set 

m×n
Classes 

DMPSVM
Accuracy 

GEPSVM
Accuracy 
p-value 

SVM 
Accuracy 
p-value 

Wine 
178×6 

3C 

68.7% 63.7% 
0.058 

93.2%* 
0.000 

Monk 
432×6 

2C 

97.9% 89.3%* 
0.002 

98.1% 
0.118 

Glass 
214×9 

3C 

94.6% 71.0%* 
0.002 

94.3% 
0.161 

MultiPlanes
400×2 

4C 

98.2% 50.3%* 
0.000 

32.5%* 
0.000 

Table 2: Gaussian Kernel Classifiers MNPSVM, 
GEPSVM and SVM 10-Fold Testing Correctness/Accuracy 
and p-values 

 
Next what we concern is computation time. Time 

complexity of standard eigenvalue problem for 
smallest/biggest eigenvalue (power/anti-power method 
[17, section 8.2]) is of order n2, and for all eigenvalues 
(QR or Jacobi method [17, section 8.3, 8.4]) is of 
order n3, while complexity of the generalized 
eigenvalue problem is O(n3) [17, section 7.7]. For an 
interior point method used for solving a 2-norm SVM 
quadratic program, its time complexity is of order n3.5 
[18]. These facts help explain the computation times 
of the three algorithms: MNPSVM, GEPSVM and 
SVM. MNPSVM is over one order of magnitude faster 
than GEPSVM and nearly two orders of magnitude 
faster than SVM. As final remarks, we note that 
MNPSVM has revealed its distinct predominance in 
computation time. 

5. Conclusions 
We have proposed a novel approach for multicategory 
classification problem that simultaneously generates 
multiple planes to classify multicategory task. This 
approach follows the genuine rather than approximal 
geometric interpretation of nonparallel plane 
classifiers. With a different regularization strategy, 
each plane is easily obtained through solving the 
standard eigenvalue problem, instead of generalized 

eigenvalue problem of GEPSVM and quadratic 
program of SVM. Furthermore, in most cases, 
classification accuracy results are comparable to 
standard SVM. Compared to GEPSVM, the test 
accuracy of MNPSVM outperforms GEPSVM, 
especially in multicategory XOR classification. Also, 
standard eigenvalue problem can more quickly be 
solved than the generalized eigenvalue problem in 
GEPSVM and the optimization algorithm needed for 
SVM. The simple geometric interpretation, 
computational efficiency, and test accuracy of 
MNPSVM on real world data indicate that it is an 
effective and efficient algorithm for multicategory 
classification. 
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