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Abstract 
This paper proposes a new approach to improve the 
control precision of shaking table control system, in 
which the fuzzy neural network (FNN) technique and 
iterative learn control (ILC) are combined and 
developed a new control technique. A FNN inverse 
model is built and is identified through a white noise 
with appropriate peak values and frequency range. 
Then better control effect is obtained by ILC than 
Remote Parameter Control (RPC). This proposed 
technique is capable of improving the system precision 
and adaptability, and reducing the effect of structural 
load’s dynamic characteristic. 
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1.  Introduction 
Shaking table test technology is developing rapidly 
worldwide with the development of structural test 
technique. There are a lot of factors affecting the 
tracking accuracy of earthquake wave input in the 
shaking table control system, which is nonlinear and 
affected by load dynamic characteristic, belonging to 
hydraulic servo control system. The current technique 
of shaking table control system, namely, Remote 
Parameter Control (RPC) cannot achieve a good 
tracking effect, as the tracking error is dependent on 
the physical parameters of the entire system (including 
flexibility of foundation, oil retractility of actuator), 
the types of the hydraulic control system, and load 
dynamic characteristic, etc. Firstly, the shaking table is 
simulated with produced artificially signal or recorded 
signal (using artificial white noise in order to 
guarantee full driving), and system transfer function of 
the entire experimental system (including shaking 
table system and experimental object) is achieved. 
Secondly, initial driving signal is computed with the 
system transfer function, with which the shaking table 
is simulated and the new transfer function and errors 
are computed to modify the driving signal. Thirdly, 
with the revising driving signal the experiment is 

started. In this paper, adopting fuzzy neural network 
(FNN) technique and iterative learn control (ILC) 
improves the control precision of shaking table control 
system. 

2. Identification of FNN inverse 
model of nonlinear system 

Fuzzy neural network (FNN) is a new technology, 
which combines fuzzy technology with neural network. 
It overcomes their disadvantages and integrates their 
advantages. On the one hand, it enhances the model 
interpreting ability of the neural network by making 
use of the interpreting ratiocination ability of the fuzzy 
system; on the other hand, it overcomes the 
dependences of the fuzzy technology on the advice of 
experts and the non-self-adaptability of the fuzzy 
concourse by making use of the self-learning functions 
of the neural network. And it can close to the inverse 
mapping of any continuous mapping with any 
precision. In this paper, we will discuss the structure 
of the fuzzy neural network used to identify the 
inverse model of shaking table system, as Fig. 1. 
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Fig. 1: Identification of FNN inverse model of the shaking 
table system. 

 
Defines )(kU  and )(kY as Input-Output time 

series of given system with determined initialization 
values. The NARMAX model of Input-Output system 
can be expressed by difference equation, which is a 
stabilized and d-rank time delay reversible system: 
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Where, Y is output and U is input. The difference 
equation of inverse system of the d-rank time delay 
nonlinear system can be expressed by (2): 
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The output of fuzzy neural network inverse model is: 
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Where, V is adjustable parameter of fuzzy neural 
network identifier. 

2.1. Structural identification of 
fuzzy neural network 

For identified system with only input and output data, 
no other information, clustering algorithm is an 
effective method constructing the structure of fuzzy 
system. Commonly, fuzzy c means (FCM) algorithm 
is used to construct initialization fuzzy rule, however, 
the clustering sort number of FCM algorithm should 
be given first, thus need abundant experience for 
engineers. Therefore, the unsupervised clustering 
algorithm is employed herein [1]-[2], in which vectors 
with high relational same characteristics can be 
grouped into a cluster automatically. 

The basic idea of this algorithm is that picking 
reference vector first, and then searching it in the 
sample space. If the degree of relation is high, the 
reference vector is replaced by the mean of these 
vectors as clustering center. The detail of the 
algorithm is presented in reference [2]. 

The unsupervised algorithm can be described as 
follows: 

Let },,,{ )()2()1( pxxxX L= be a set of p vectors in a 
(n+1)-dimensional sample space, where  
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is a vector. The preceding n scalars are input vectors 
of the k sample point, and the n+1 scalar is the 
corresponding output. 

Step 1 Define p movable vectors  )(kv  
),,2,1( pk L= and let )()( kk xv = , that is, )(kx  is the 

initial value of )(kv . 
Step 2 Calculate the relational grades between the 

reference vector )(kv and the comparative vector )(lv  
by 
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Where )()( lk vv −  represents the Euclidean 

distance between )(kv and )(lv , and b is the width of 
Guassian function. 

Step 3 Modify the relational grades between the 
reference vector 

)(kv  and the comparative vector 
)(lv  

by:  
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Where ξ  is a small constant. 
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Step 5 If all the vectors )(kz are the same as )(kv , 
pk L,2,1= , then go to Step 6; otherwise let )()( kk zv =  

and go to Step 2. 
Step 6 Based on the final results )(kv , we can 

determine that the number of clusters is equal to the 
number of convergent vector, the original data with 
the same convergent vector are grouped into the same 
cluster, and the convergent vector is the cluster center. 

In this way the given data set is grouped into m 
clusters, and the corresponding cluster centers 

),,,,( ,121 jnnjjj ccccc += L mj ,,2,1 L=  are obtained, thus 
the rule-base of an initial fuzzy model can be 
constructed as follows: 
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Where m is the number of fuzzy rules, and n is the 
number of input variables.  The subordinate function 
of the premise part in rules is Gaussian function 
(corresponded to the membership generation layer of 
Fig.2). 

])/)((exp[ 2
ijijiij bax −−=μ , 

)1;1( mjni ≤≤≤≤                        (9) 
Where 

ija  is the center of the Gaussian function, 

),,,(),,,( 2121 njjjnjjjj cccaaaa LL == ， and 
ijb is its 

width, ),,,( 21 njjjj bbbb L= . 
ijb can be computed by the 

j input data points and the errors of clustering center. 
The real value 

jω  of the consequent part is expressed 
as

jnj c ,1+=ω . 
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Fig. 2: Fuzzy neural network model. 
 

2.2. Parameter identification of 
fuzzy neural network 

In order to matches with fuzzy reasoning mechanism 
of the constructed fuzzy model, this paper has 
designed a 4 layers fuzzy neural network. This 
network structure is shown in Fig. 2, consisting of 
input layer, subordinate function layer, rule layer and 
the output layer (defuzzification layer). 

The 1st layer (input layer): each input neuron 
receives signal 

jx , and transmits it to 2nd layer. 
The 2nd layer (subordinate function): consists of m 

groups (expressed m rules), Each group has n neurons 
(expressed n rule preconditions). The i-th neuron of 
the j-th group ),2,1;,2,1( mjni LL ==  only connects 
with the i-th neuron of the 1st layer, and its production 
subordinate function is expressed by (5). 

The 3rd layer (rule layer): Also is premise set layer, 
which is used for to realize each rule premise match. 
This layer has m neurons, in which the j-th neuron 
only receives input coming from the j-th neuron of the 
2nd layer, and its output is:  
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The 4th layer (output layer): defuzzification layer, 
or rule set layer. As model total output is the linear 
combination of all rule conclusions, therefore this 
neuron output is simply defined as:  

∑ ∏∑
= ==

==
m

j

n

i
ijj

m

j
jjy

1 11
μωωα                      (11) 

Although BP algorithm is the most commonly 
used network study algorithm, this algorithm has 
many deficiencies in practical application, such as 

longer training time, slow convergence speed, and 
converging to the partial minimum point. This paper 
uses Levenberg-Marquardt (LM) algorithm [3], which 
is a union of the gradient drop law and Gauss-Newton, 
and also an improvement form of Gaussian-Newton. 
This algorithm possesses both the Gauss-Newton's 
partial astringency and the overall situation 
characteristic of the gradient drops method. Since the 
LM algorithm has used approximate second time 
derivative information, it is much more efficient than 
the gradient method. 

Supposes )(kω  to express the vector composed by 
the weight and the threshold value of k time iteration, 
so the vector )1( +kω  composed by the new weight and 
the threshold value can be obtained according to 
following rules:  
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where: 

)()(])()([ 1 ωωμωωω eJIJJ T −+−=Δ          (13) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

=

n

nn

n

ee

ee

J

ω
ω

ω
ω

ω
ω

ω
ω

ω
)()(

)()(

)(

1

1

1

1

L

MOM

L

                  (14) 

The (14) is Jacobian matrix. 
The erroneous target function is:  
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The computation step of LM algorithm is as 
follows: 

1) Gives the training error permissible value 
nμβε 、、 , as well as the initialization weight 

and the threshold value vector )0(ω , 
0=k , nμμ = ; 

2)   Computes network output and erroneous target 
function )( )(kE ω ; 

3)  Computes Jacobian matrix )(ωJ  according to 
(14); 

4) Separately computes ωΔ  and )( )(kE ω  
according to (13) and (15); 

5)  If εω <)( )(kE  returns to 7), otherwise, take 
)1( +kω  as weight and threshold value 

computing erroneous target function; 
6)  If )()( )1()1( ++ < kk EE ωω , then makes 1+= kk , 

βμμ /= , and returns to 2); Otherwise this 
time does not renew the weight and the 
threshold value, and makes )()1( kk ωω =+ , 

μβμ = , then returns to 4); 
 7)   Stop. 

 



3. Iterative learning control 
The shaking table control system may be regarded as 
an interactive motion control system. This system 
satisfies following condition approximately [4]: 

1)  Regarding the known ideal output )(tYd , the 
system has only one input )(tU d  inevitably 
which corresponds with it; 

2)  Each tracking has fixed time-gap ( 0>T ) and 
fixed ideal track )(tYd ],0[ Tt∈  ; 

3)   System ideal track )(tYd  is realizable. 
Therefore, the iterative learning tool can be used 

to achieve the control goal for the shaking table 
control system. 

Through the control system inverse model 
identification mentioned above, the initial input signal 

)(0 tU  of the controlled subject may be obtained by 
ideal output signal )(tYd . And from this input signal, 
the actual output signal of controlled subject )(0 tY  
may be measured. 

The goal of iterative learning is seeking to a 
recursion algorithm: 

))(),(()(1 tztUFtU kkk Δ=+                   (16) 
where, F represents a kind of recursion algorithm. 

With increasing in learning times, k of the control 
system, the actual output )(tYk  will converge into the 
ideal output )(tYd . 
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Fig. 3: Iterative learning control strategy of system. 

 
The control strategy of iterative learning control is 

expressed as follows (Fig. 3): 
1)  Computing error of the k-th time:  
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       in which N is the sampling data length. If the 
error is within the permissible level ( ε>kE ), 
the next step will go on, otherwise, the 
iteration stops; 

2)  Regarding k-th system output )(tYk  and input 
)(tU k  as those of the k-th fuzzy neural 

network inverse model ( kFNN ), and then 
renew weighting of this model )(k

iω ; 
3) Calculating (k+1)-th weighting )1( +k

iω  of the 
system through kFNN , the (k+1)-th fuzzy 
neural network inverse model 1+kFNN  can be 
obtained; 

4)   The ideal output )(tYd  is reused as the input of 
the (k+1)-th fuzzy neural network inverse 
model ( 1+kFNN ), so the (k+1)-th input signal 

)(1 tUk+  can be computed; 
5)  Measuring the (k+1)-th output )(1 tYk+  of system 

and repeating the first step; 
6)   Stop. 

4. Application 
For earthquake shaking table control system with 
flexible load simulation, white noise is used as the 
exciting input of the system with the frequency range 
from 1 to 30Hz and the PGA of 0.12g (Fig. 4 and Fig. 
5). The white noise input and the output of are used as 
the input and output of the fuzzy neural network, then 
the parameters of fuzzy neural network inverse model 
are determined. The ideal input of the system is 
calculated through the ideal output of the control 
system (El-Centro earthquake wave), finally the ideal 
output in the allowance error scope is obtained after 2 
steps iteration. The control performance can be 
observed from Figure 6 and figure 7, and the control 
effect comparison between two kinds of control 
strategies see figure 8 and table 1. In which the 
relative error based on RPC control strategy is 10%, 
while the relative error based on FNN and ILC control 
strategy is 4%, so FNN and ILC control strategy is 
better than RPC. The proposed procedure can meet the 
requirement of the earthquake simulation experiments 
and improves control precision of the original control 
system. 
 

Control Strategies RPC FNN and ILC 

Relative Error (%) 10 4 

Table 1: The control effect comparison between two kinds of 
control strategies. 

 



 
Fig. 4: The time history signal of white noise. 
 

 
Fig. 5: The frequency domain signal of white noise. 
 

-1.0

-0.5

0.0

0.5

1.0

15 17 19 21 23 25

time        (s)

ac
ce

le
ra

tio
n 

   
 (g

)

ideal output

actual output

 
Fig. 6: The control effect based on RPC control strategy. 
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Fig. 7: The control effect based on FNN and ILC control 
strategy. 
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Fig. 8: The control effect comparison between two kinds of 
control strategies 
 

5. Conclusions 
This paper combined the fuzzy neural network 
technology and the iterative learn control technology 
into the earthquake shaking table control system and 
has obtained good control performance. However, the 
effect of the load structure dynamic characteristic on 
the control system has not been included in the control 
algorithm, which must be considered for better 
performance in the future. 
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