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Abstract 
A nonlinear model predictive control (NMPC) 
algorithm based on a BP-ARX combination model is 
proposed for multivariable nonlinear systems whose 
static nonlinearity between inputs and outputs could be 
obtained. The dynamic behavior of the system is 
described by a parameter varying ARX model, whose 
parameters are estimated on-line with recursive least-
squares algorithm and rescaled properly according to a 
BP neural network representing the system static 
nonlinearity. The construction of the BP-ARX model 
and a constrained NMPC algorithm based on the BP-
ARX model are elaborated. The effectiveness of the 
proposed method is demonstrated by simulation on a 
multivariable chemical reactor system. 

Keywords: Neural networks, Model predictive control, 
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1. Introduction 
During the past decades, considerable progress has 
been made in the theory and practice of model 
predictive control (MPC) [1]. MPC is well suited for 
high performance control of constrained multivariable 
processes because explicit pairing of input and output 
variables is not required and constraints can be 
incorporated directly into the associated on-line 
optimal control problem. A major limitation of linear 
MPC is that plant behavior is described by linear 
dynamic models. As a result, linear MPC is inadequate 
for highly nonlinear process and moderately nonlinear 
process which has large operating regions. Increasing 
demands on throughput and product quality have 
spurred the development of nonlinear MPC (NMPC) 
in which a more accurate nonlinear dynamic model is 
used for process prediction and optimization [2][3]. 

It is estimated that, in a typical commissioning 
project, modeling efforts can take up to 90% of the 
cost and time in implementing a model predictive 
controller [4]. Consequently, the development of a 
suitable nonlinear dynamic model of the controlled 
process is of paramount importance to the efficient 

implementation of NMPC. The available strategies to 
develop system dynamic model mainly include: 

• Representing system by a linear model 
• Representing system by several linear models 

[5], Hammerstein models or Wiener models [6] 
• Representing system by neural networks [7], 

fuzzy models [8], or the combination of neural 
networks and fuzzy models [9] 

This paper proposes a novel nonlinear dynamic 
model and elaborates its usage in NMPC. The 
proposed model combines a second order ARX 
(AutoRegressive with eXternal input) model identified 
on-line by recursive least-squares algorithm (RLS) and 
a BP (Back-Propagation) neural network trained off-
line, referred to as BP-ARX model. The construction 
of the BP-ARX model is given in Section 2. A 
constrained NMPC algorithm based on the BP-ARX 
model is elaborated in Section 3. The simulation re-
sults of the proposed method and recursive generalized 
predictive control on a double-input double-output 
nonlinear chemical process are illustrated in Section 4. 
Section 5 draws the conclusions of this paper. 

2. The BP-ARX model 

2.1. BP neural network steady-state 
model 

In the process industries, two types of process data are 
readily available: historical data and open-loop plant 
test data. The steady-state relation between inputs and 
outputs of most processes could always be extracted 
from those data. Thus the system static nonlinearity 
can be regarded as an independent factor, and 
constructed as a steady-state model. For systems 
whose first-principles models represented by ordinary 
differential equation (ODE) are known in advance, the 
steady-state data between inputs and outputs can be 
obtained by solving the ODE. 

With inherent ability to approximate any 
nonlinear continuous function without requiring any 
prior knowledge, the neural networks theory has been 
greatly developed and widely used in process control. 



Because there are only a nonlinear mapping between 
the system steady-state inputs and outputs, a static 
network without feedback elements can describe the 
mapping. BP neural networks are the most commonly 
used multilayer feed-forward networks and can be 
easily trained with back-propagation algorithm. Thus a 
three-layer BP network is used to represent the system 
static nonlinearity. The structure of the BP network is 
shown in Fig. 1. 
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Fig. 1: Structure of the BP network. 
 

Suppose that there are m inputs and n outputs with 
a hidden layer consisting of p hidden nodes. Training 
the network using a gradient descent optimization 
procedure based on the system steady-state inputs and 
outputs data, the BP neural network steady-state 
model representing the system static nonlinearity can 
be represented as: 

 ( )2 2,1 1 1,1 1 2s sy f W f W u θ θ⎡ ⎤= ⋅ ⋅ + +⎣ ⎦  (1) 

where ys=[y1s, y2s, …, yns]T is system steady-state 
output vector, us=[u1s, u2s, …, ums]T is system steady-
state input vector, W1,1, W2,1, θ1, θ2 are weighting 
matrices and bias vectors of the hidden layer and the  
output layer, respectively, f1 is the hidden layer 
transfer function defined as the following tan-sigmoid 
style: 
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and f2 is the output layer transfer function defined as 
the following linear style: 

 2f x=  (3) 
Reversing the inputs and outputs data and 

retraining the BP network, the output-input steady-
state model can be represented as: 

 ( )2 2,1 1 1,1 1 2s su f W f W y θ θ⎡ ⎤= ⋅ ⋅ + +⎣ ⎦  (4) 

where the notations have the same meanings but 
different values as those of in Eq. (1). 

The BP neural network steady-state model is 
trained off-line and can be retrained periodically with 
the steady-state data which is updated during industrial 
application. 

2.2. Parameter varying ARX model 

Test the system dynamic outputs at initial conditions 
with Pseudo-Random Binary Signal (PRBS), a second 
order multivariable ARX model with m inputs and n 
outputs can be easily identified with Least Squares 
(LS) method described in [10]: 

 ( ) ( ) ( )
2

1
i i

i
y k A y k i B u k i

=

= − + −⎡ ⎤⎣ ⎦∑  (5) 

where y(k)=[y1(k), y2(k), …, yn(k)]T is a vector of 
measured outputs or controlled variables, u(k)=[u1(k), 
u2(k), …, um(k)]T is a vector of process inputs or 
manipulated variables, Ai∈Rn×n, Bi∈Rn×m. 

It may be necessary to perform on-line model 
adaptation when the process deviates significantly 
from the operating conditions. Thus, the parameters of 
above ARX model can be updated on-line with RLS. 
Let 

 ( ) [ ]1 2 1 2k A A B Bθ =  (6) 

( ) ( ) ( ) ( ) ( )1  2  1  2T T T TT k y k y k u k u kϕ = ⎡ ⎤− − − −⎣ ⎦ (7) 

where ( ) ( )2n n mk Rθ × +∈ , ( ) ( )2 1n mk Rϕ + ×∈ . 
Then, the parameters of ARX model (5) can be 

updated on-line by: 
 ( ) ( ) ( ) ( ) ( ) ( )1 1 Tk k y k k k L kθ θ θ ϕ= − + − −⎡ ⎤⎣ ⎦  (8) 
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 ( ) ( ) ( ) ( )1 1 TP k P k I L k kϕ
ρ

⎡ ⎤= − −⎣ ⎦  (10) 

where 0<ρ≤1 is forgetting factor, L(k) is correcting 
factor, P(k) is positive definite matrix, P(0)=αI, I is an 
identity matrix, α is commonly assigned a small value 
(0<α≤1) for high signal-to-noise ratio and a large 
value (α>1) for low signal-to-noise ratio [11]. 

Although the RLS system identification process 
can update the model parameters in such a way that 
the outputs computed from Eq. (5) are as close as 
possible with the measured outputs in the sense of 
least squares, ARX model (5) cannot reflect the future 
nonlinearity of the system and NMPC based on this 
model will show a performance of slow respond to 
great changes in set-points. Therefore, a new concept 
Adaptation Index ξ is brought forward to constrain the 
effect time of RLS and its definition is as following.  

Definition: The Adaptation Index ξ is a positive 
constant and is used to determine the start and end of 
the RLS. If and only if ξ less than the set value 
provided by user, the RLS comes into effect. ξ is 
calculated on-line and satisfies the following formula: 

 ( ) ( )
( )

( ) ( )
( )

1 1

1
max , ,sp n nsp

sp nsp

y k y k y k y k
y k y k

ξ
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L  (11) 

where |y| denotes the absolute value of y, ysp=[y1sp, 
y2sp, …, ynsp]T is system output set-points, if yjsp equals 
zero, the ξ of jth output will not be calculated. 



In order to reflect the future nonlinearity of the 
system by ARX model (5), the parameters of the ARX 
model are rescaled by setting the model’s steady-state 
gain be equal to the gains calculated according to BP 
neural network steady-state model. 

The steady-state gain matrix of ARX model (5) is: 

 ( ) ( )11 2
1 2 1 2

1 2

B BK I A A B B
I A A

−+
= = − − ⋅ +

− −
 (12) 

The gain between the steady-state input ui and the 
steady-state output yj is: 

 [ ] ( ) ( )j j i i j is
i

i i

y y u u y u
K u

u u
∂ + Δ −

= =
∂ Δ

 (13) 

where i=1, 2, …, m, j=1, 2, …, n, yj(ui+Δui) and yj(ui) 
are calculated according to Eq. (1), Δui is an arbitrary 
small positive number. 

The future gains during the prediction horizon are 
approximate to the linear interpolation of the current 
steady-state gain K1

s and the next steady-state gain K2
s. 

 ( ) ( )2, 1,
1,

s s
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i i

K K
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u u
−
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where ui
c, ui

n are the current and the next ith input, 
respectively, which are calculated according to Eq. (4) 
based on the current measurement outputs y(k) and the 
next set-points ysp(k+1), K1

s, K2
s are gains calculated 

according to Eq. (13) based on uc, un, respectively, 
Δui(k+q) is the increment of ith input at k+q time 
instant, q=0, 1, …, P-1, P is prediction horizon. 

Multiply Δ=1-q-1 at both side of Eq. (5), the 
corresponding incremental form of ARX model (5) is 

 ( ) ( ) ( )
2
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y k A y k i B u k i

=

Δ = Δ − + Δ −⎡ ⎤⎣ ⎦∑  (15) 

where Δy(k)=y(k)-y(k-1), Δu(k)=u(k)-u(k-1). 
Setting the gain calculated from Eq. (12) be equal 

to the gain calculated from Eq. (14) by rescaling the B1, 
B2 in the ARX model (15), the following parameter 
varying ARX model describing the dynamic behavior 
of nonlinear system over their entire operating regions 
can be obtained: 
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where 
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and Ai, Bi have the same value as those in Eq. (6), 
other notation have the same value as those in Eq. (14), 
B1./B2 denotes dividing every two number at the same 
row and the same column in matrix B1 and B2, B1.*K 
denotes multiplying every two number at the same 
row and the same column in matrix B1 and K. 

3. Constrained NMPC 
Define the variables S(n), T(n) and H(n) as: 

 
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 2

11 12

21 22

1 2

1 1 2

1 1 2

S n A S n A S n

T n S n B S n B
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 (18) 

where n=3, 4, …, P+1, and S(1)=I, S(2)=A1, T(1)=B11, 
H(1)=B21. 

Then, the system output increments ( )ˆ |y k j kΔ + , 
(j=1, 2, …, P) in prediction horizon can be calculated 
according to Eq. (16)-(18). 
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where  
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[ ]21 12(1) (2) ( ) TG S S S P B= ⋅L , 
[ ]22 22(1) (2) ( ) TG S S S P B= ⋅L , 
[ ]1 (2) (3) ( 1) TF S S S P= +L , 
[ ]2 2(1) (2) ( ) TF S S S P A= ⋅L . 
Then, the system predictive outputs will be: 
 ( ) ( ) ( )ˆ ˆY k V Y k W y k= ⋅ Δ + ⋅  (20) 
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Correcting predictive outputs with the error ep(k) 
between predictive outputs and system real outputs at 
time instant k: 

 ( ) ( ) ( )ˆ
c pY k Y k Z e k= + ⋅  (21) 



where ( ) ( ) ( ) ( )ˆ1 | 1pe k y k y k y k k= − − − Δ − , Z∈R(n×P)×n 
is a correction matrix, y(k) is the system output vector 
at time instant k, ( )ˆ | 1y k kΔ − is the predictive output 
increment at time instant k calculated at time instant k-
1. 

Setting reference trajectory as: 
 ( ) ( ) ( ) ( )1 2

TT T T
r r r rY y k y k y k Pk = + + +⎡ ⎤⎣ ⎦L  (22) 

where yr(k+j)=Cyr(k+j-1)+(I-C)ysp, j=1, 2, …, P, yr(k)= 
y(k) is system measurement output at time instant k, 
C=diag{c1, c2,…, cn}(0≤c≤1) is soft coefficient matrix. 

The on-line optimization problem to be solved in 
NMPC can be formulated as: 
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where P is prediction horizon, M is control horizon, 
Q=qI, R=rI are output error weighing matrix and 
control input weighing matrix. 

Because predictive model (16) has quadratic parts, 
it is a nonlinear predictive model. The optimization 
problem (23) must be solved by nonlinear 
programming algorithm. SQP (Sequential Quadratic 
Programming) is one of the most important methods 
for the nonlinear programming (NLP) problems. It has 
been shown that SQP requires the fewest function 
evaluations to solve NLP problems and can be applied 
to a wide range of process systems engineering 
problems with different structures. The convergence 
rate of SQP has been proved to be super linear. 

Then the optional control inputs u(k) will be: 
 ( ) ( ) ( )1u k u k u k= − + Δ  (24) 

where Δu(k) are the optional control input increments 
at time instant k which are obtained by solving the on-
line optimization problem (23) using SQP. 

The block diagram of the constrained NMPC 
based on the BP-ARX model is shown in Fig. 2 
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Fig. 2: Block diagram of the constrained NMPC. 

4. Simulation example 
Because of their highly nonlinear behavior, chemical 
reactors are the most common application and have 
become a benchmark problem for NMPC simulation 
studies. To demonstrate the effectiveness of the 
NMPC based on the BP-ARX model, a nonlinear 
MIMO system (a reactor plant) is considered for 
simulation purpose [12]. 

1 B1,F C

h

2 B2,F C

0 B,F C
 

Fig. 3: Chemical reactor system. 
 

For the reaction A + B→P, where A is an excess 
component, CB is the concentration of component B. 
The reaction occurs in an ideal stirred tank as shown 
in Fig. 3. Concentration of component B is assumed to 
be constant in both inlet flows. Both inlet flows 
contain an excess amount of A. The tank is well stirred 
with a liquid outflow rate determined by the liquid 
height in the tank. The system parameters are CB1= 
24.9, CB2=0.1. 

The simplified dynamic model of the reactor is: 

 ( ) ( )
( )

0.5
1 1 2 1

2 1 2 2 2
2 2

1 2

1 1 2 2

0.2
24.9 0.1

1
,    

x u u x
x u x u xx

x x
y x y x

= + −

− + −
= −

+

= =

&

&  (25) 

where u1 is inlet flow rate with condensed B (F1), u2 is 
inlet flow rate with dilute B (F2), x1 is liquid height in 
the tank (h) and x2 is concentration of B in the reactor. 

The control objective is to minimize the diffe-
rence between the reactor output and set-points. Initial 
conditions are selected as x10=40, x20=0.17. Unlike 
these variables in reference [12], the sampling time is 
10 second here, and u1, u2 are constraint as [0, 2]. 

The steady-state data between inputs and outputs 
can be obtained by solving the differential Eq. (25). 
Choosing 50 number of u1, u2 respectively between 
constraints [0,2], 2500 pairs of sample data can be 
obtained to train the BP neural network. With Neural 
Network Toolbox in MATLAB, the BP neural 
network with 15 hidden nodes can be easily obtained. 
The steady-state characteristic of the chemical reactor 
system described by the sample data is shown in Fig. 4. 

The original second order ARX model can be 
obtained by testing the system dynamic outputs with 
PRBS at initial conditions. Let P=5, M=3, c=0.5, q=1, 



r=1, α=100, ρ=0.98, the control effects of different 
Adaptation Index on NMPC are shown in Fig. 5, 
where the dashed line are set-points, the dotted line are 
NMPC without RLS, the dash-dot line are NMPC 
always having RLS and the solid line are NMPC 
partially having RLS. It can be seen that NMPC 
partially having RLS can quickly respond to set-points 
change, and has good stability when approaches set-
points. The great fluctuation in outputs for ξ=2 is due 
to the combined effect of the RLS updating model’s 
parameters with Eq. (8) and gain scheduling strategy 
rescaling the model’s parameters with Eq. (17) at the 
middle of system operating point change, in which 
case the system real dynamic gain differs greatly from 
the gain calculating from Eq. (13). Consequently, the 
effect time of RLS should be constrained and a 
suitable value of Adaptation Index ξ can improve the 
prediction accuracy of the BP-ARX model. 

 
Fig. 4: Steady-state characteristic of chemical reactor system. 
 

Generalized Predictive Control (GPC) [13] is one 
of the most popular members of the MPC family, 
which has quickly received widespread acceptance. 
Because there are no on-line estimation is used, with 
the multivariable GPC algorithm proposed in [14], this 
chemical reactor system can’t achieve its control 
objective. Moon et al. [11] developed a recursive GPC 
(RGPC), which combines the process of the RLS 
system identification and GPC design. The advantages 
of RGPC are that no prior system information is 
required, and that the controller is updated adaptively 
in the presence of a changing operating environment 
[11]. Thus a comparison of the control effects between 
NMPC and RGPC is processed here. 

With the same parameters and reference 
trajectory as above, output error weighing q=15 and 
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Fig. 5: Effects of different Adaptation Index on NMPC. 
 
quadratic programming being added to RGPC to deal 
with input constraints, the control effect of NMPC 
(ξ=0.15) and RGPC are demonstrated in Fig. 6. The 
corresponding manipulated variables are shown in Fig. 
7. It can be seen that NMPC based on BP-ARX model 
provides better set-points tracking than RGPC from 
the point of quickly respond to set-points change and 
faster settling time. The poor tracking performance of 
the RGPC is due to the large changes in the process 
gain and model mismatch at the beginning of set-
points change. On the other hand, the BP-ARX model 
can keep up with the system gain change over their 
entire operating regions, the model mismatch is 
completely eliminated. 

To study the performance of the NMPC when 
there is unmeasured disturbances, disturbances in both 
CB1 and CB2 are considered. In the process block, CB1 
and CB2 are changed to 20.0 and 0.2 respectively at t=0, 
while nominal values of 24.9 and 0.1 was used in the 
model. The control parameters are mostly the same as 
above except for r=10, ξ=0.015 in NMPC and q=10 in 
RGPC. The control effects of NMPC and RGPC are 
demonstrated in Fig. 8, which shows that NMPC can 
track the tank level faster and smoother, track the 
concentration of B with smaller peak error and faster 
settling time than RGPC. Fig. 9 shows that NMPC has 
less fluctuation in manipulated variables than RGPC. 

5. Conclusions 
A novel BP-ARX nonlinear dynamic model is 

constructed for the purpose of NMPC. By estimating a 
second order ARX model on-line with RLS and 
rescaled the model’s parameters according to the off-



line trained BP neural network steady-state model, the 
BP-ARX model can efficiently represent the dynamic 
behavior of the nonlinear processes over their entire 
operating regions. The Adaptation Index is defined to 
constrain the effect time of the RLS and improve the 
prediction accuracy of the BP-ARX model. Simulation 
results on a multivariable chemical process 
demonstrate that NMPC based on BP-ARX model can 
quickly respond to set-points change, together with the 
performance of smaller peak error, faster settling time 
and less fluctuation in manipulated variables for 
modeling errors. 
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Fig. 6: Comparison of the control results obtained from 
NMPC and RGPC on chemical reactor system with set-
points change. 
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Fig. 7: Manipulated variables. 
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Fig. 8: Comparison of the control results obtained from 
NMPC and RGPC with set-points change in the presence of 
a modeling error in CB1 and CB2. 
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Fig. 9: Manipulated variables. 
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