
An Improved Caching Strategy for Training
SVMs

Liang Zhou1 Fen Xia1 Yanwu Yang1

1Institute of Automation,Chinese Academy of Sciences, Beijing 100080, P. R. China

Abstract

Computational complexity is one of the most im-
portant issues while dealing with the training of
Support Vector Machines(SVMs), which is done
by solving corresponding linear constrained con-
vex quadratic programming problems. The state-
of-the-art training of SVMs takes iterative decom-
position strategies that focus on working-set se-
lection to solve quadratic programming problems.
Shrinking and caching are two indispensable strate-
gies to reduce the complexity of the decomposi-
tion process. Yet, most existing caching strategies
mainly consider usage records of samples, while ig-
noring probabilities of samples being selected into
working sets. These probabilities might determine
the efficiency of caching. This paper proposes an
improved caching strategy by taking into account
these probabilities of samples being selected into
working sets, to reduce computational costs of ker-
nel evaluations in the training of SVMs. Experi-
ments on several benchmark data sets show that
our caching strategy is more efficient than those
existing ones.

Keywords: Support vector machine, Working set
selection, Shrinking, Caching, Kernel evaluation

1. Introduction

Support Vector Machines(SVMs) are a family of
powerful statistical learning techniques for pat-
tern recognition, regression and density estimation
problems. SVMs have proven to be effective in
many practical applications. SVMs learning meth-
ods are based on the structural risk minimization
(SRM) induction principle, which is derived from
the statistical learning theory [1]-[3]. The prob-
lem of training SVMs is converted to a linear con-
strained convex quadratic programming problem.

A lot of commercial packages are used to solve
quadratic programming problems. In these pack-
ages, a whole kernel matrix Q is held in the mem-
ory, thus the quadratic programming problem has

the space complexity O(l2) and the time complex-
ity O(l3), where l is the size of training set. When
l is too large, it’s impossible to afford the space
and the time. Decomposition algorithms are main-
stream approaches to tackle this problem. They
decompose a large-scale optimization problem into
several small-scale sub-problems. By solving a
series of small-scale sub-problems sequently, they
obtain a solution to the large-scale optimization
problem. At each step a fixed-size subset(called
working-set B) of the whole training set is cho-
sen to form a small-scale optimization sub-problem.
When the small-scale optimization sub-problem is
solved, some samples of the working-set are substi-
tuted by those outside (of working set) with some
working-set selection strategies. Then the problem
of solving the small-scale sub-problem is formulated
in the same fashion through an iterative process.
Finally, decomposition algorithms terminate when
some criteria (e.g. KKT conditions for all samples)
are satisfied.

Kernel evaluations are the main computational
complexity. So the number of kernel evaluations
is a good criteria to evaluate the performance of
training SVMs. Some algorithms are proposed to
reduce the total number of iteration [4] or to mini-
mize the number of kernel evaluations per iteration
[5].

The state-of-the-art training of SVMs takes
iterative decomposition strategies that focus on
working-set selection to solve quadratic program-
ming problems. A series of kernel evaluations
are repeated in the training of SVMs, therefore,
caching strategies can be used to avoid the re-
computation of those evaluations. This implies
searching for an elegant trade-off between mem-
ory consumption and the training time. In many
tasks the number of Support Vectors(SVs)1 is much
smaller than the number of training samples. This
implies that, kernel evaluations can be dealt by
only considering evaluations relevant to those SVs,
which approximates to some shrinking strategies.

1In (2), support vectors refers to samples whose corre-
sponding αi is not zero.

Shrinking and caching are two indispensable strate-
gies to reduce the complexity of the decomposi-
tion process. Joachims [6] first took shrinking and
caching strategies to train SVMs, and previous ex-
periments demonstrated that shrinking and caching
had very good effects. To the best of our knowledge,
there are two popular packages of training SVMs
using caching strategies: SV M light and LIBSV M .
The former records the times of (samples) being
selected into the working-set, then replaces sam-
ples with least times in caching by those being se-
lected. The latter views the caching as a queue.
and deletes the head of the queue while adding
samples being selected into the tail of the queue.
Most existing caching strategies mainly consider
usage records of samples, while ignoring probabil-
ities of samples being selected into working sets.
These probabilities might determine the efficiency
of caching. In this paper, we propose an improved
caching strategy with consideration of these prob-
abilities to save computational costs of kernel eval-
uation in the training of SVMs. Experiments on
several benchmark data sets show that our caching
strategy is more efficient than those existing ones.

The remaining of the paper is organized as fol-
lows. Section 2 introduces the standard SVMs.
Section 3 discusses the general decomposition al-
gorithm and some existing working-set selection al-
gorithms. Section 4 describes most existing shrink-
ing and caching strategies. An improved caching
strategy is proposed in Section 5. Experiments and
discussions are presented in Section 6. Section 7
concludes the paper.

2. Standard support vector
machines

To facilitate the reading, here are some important
notations in this paper:

• l: size of training samples
• n: dimension of the sample’s feature
• φ(x): the mapping function
• w: weights vector
• α: Lagrange multipliers vector
• b: bias term
• K: sample inner product=< φ(xi), φ(xj) >
• ε: stop condition
• Q: kernel matrix= yiyj < φ(xi), φ(xj) >
• B: working set
• e: the vector of all ones
• C: regularization parameter (≥ 0)
• M(α): min

i∈Ilow(α)
−yi 5 f(α)i

• m(α): max
i∈Iup(α)

−yi 5 f(α)i

• Iup (α): {t | αt ≤ C, yt = 1 ‖ αt ≥ 0, yt =
−1},

• Ilow(α): {t | αt ≤ C, yt = −1 ‖ αt ≥ 0, yt =
1},

In this paper, we just consider standard SVMs(1-
norm, proposed by V.N.Vapnik[1][2] for classifica-
tion). Given training vectors xi ∈ Rn, i = 1, ..., l,
in two classes, and a vector y ∈ Rl such that
yi ∈ {1,−1}, the standard SVMs solve the follow-
ing primal problem:

min
w,b,ξ

1
2w

T w + C
l∑

i=1

ξi

subject to yi(wT φ(xi) + b ≥ 1− ξi, (1)
ξi ≥ 0, i = 1, ..., l.

Its dual problem is

min
α

1
2αT Qα− eT α

subject to 0 ≤ αi ≤ C, i = 1, ..., l, (2)
l∑

i=1

yiαi = 0.

Usually, we solve the dual problem (2), as it is
easier to solve (2) than (1).

3. Decomposition algorithm
and working set selection

In this section, we introduce the history and details
of decomposition algorithm. First, the simplest
heuristic is known as chunking by V.N.Vapnik[1].
And then, Osuna [7] proved that if B contains a
variable, which violates the optimality condition,
the object function will have a strict improvement
when the sub-optimal is re-optimized. Osuna also
gave an improved algorithm for training SVMs.

The Sequential Minimal Optimization (SMO)
[8] algorithm is derived by taking the idea of the de-
composition method to its extreme and optimizing
a minimal subset of just two points2 at each itera-
tion. The power of this technique resides in the fact
that the optimization problem for two data points
admits an analytical solution, eliminating the need
to use an iterative quadratic programme optimizer
as part of the algorithm. In general a decomposi-
tion algorithm can be formulated as table 1.

2The requirement that the condition
lP

i=1
yiαi = 0 is en-

forced throughout the iterations implies that the smallest
number of B is 2.

1 Given training set {xi, i = 1, ..., l.}
2 α0 ← feasible starting point, t = 1
3 Do
4 select working set Bt

5 solve fB(t) and update αt

6 t = t + 1
7 While stopping criterion is not met

Table 1: Decomposition Algorithm In General

1 Select
2 i ∈ arg max

t
{−yt 5 f(αk)t | t ∈ Iup(αk)},

3 j ∈ arg min
t
{−yt 5 f(αk)t | t ∈ Ilow(αk)},

4 Return B = {i, j}.

Table 2: Maximal Violating Pair

The fourth step in table 1 decides the process
of the algorithm iterative, and the convergence of
the decomposition algorithm depends strongly on
the working set selection algorithm. There are two
main categories of working set selection algorithm,
one uses first-order information and the other uses
second-order information. The first-order informa-
tion algorithm selects pairs of variables that mostly
violate(MVP) [9]3, which is formulated as table 2,
the Karush-Kuhn-Tucker(KKT) condition for opti-
mality.

So far, there are two algorithms taking second-
order information into account(LIBSVM-2.8 [4] [10]
and HMG [5]). Although both of them use second-
order information, ultimately they could not avoid
all C2

l pairs to get the optimal B. In fact, they all
use the greedy strategy. LIBSVM-2.8 selects the
same i as MVP, and then checks only O(l) pairs
to decide j, while HMG takes one variable of the
previous Bt into the current B. They both have dis-
advantages in per iteration: LIBSVM-2.8 can not
guarantee that the corresponding kernels4 of i are
available in the matrix cache, while HMG can only
take full advantage of a sample point of information
in each iteration as it takes one point of the previ-
ous Bt. The LIBSVM-2.8 and HMG working set
selection algorithm are presented in table 3 and ta-
ble 4 respectively. Next section will give the details
of shrinking and caching strategies used in popu-
lar software(LIBSV M and SV M light) of training
SVMs.

3Detailed derivation is specified in [4] [9].
4Evaluating the sub-object function should use the kernel

Qij , j = 1, ..., l.

fsub(i, j) is the sub-optimal problem defined at [3].
1 α0 ← feasible starting point, t = 1
2 select i ∈ arg max

t
{−yt 5 f(αk)t | t ∈ Iup(αk)},

3 select j ∈ arg min
t
{fsub(i, t) | t ∈ Ilow(αk),

4 −yt 5 f(αk)t < −yi 5 f(αk)i}.
5 Return B(t) = {i, j}.

Table 3: LIBSVM-2.8

4. Shrinking and caching

Shrinking and Caching are two very effective
strategies for training SVMs. They are first
proposed by Joachims [6], and implemented in
software SV M light. Shrinking is based on the
idea that those samples, whose αi are in the value
of the border, may not be changed in the future
training. So those samples can be shrunken in
the training procedure, then the whole training
problem becomes smaller and easier to be solved.
P.-H. Chen [11] proves the following theorem:
Theorem 1 Assume Q is positive semi-definite
and the decomposition algorithm uses LIBSVM-
2.8 working set selection algorithm. Let I ≡ {i |
−yi 5 f(α)i > M(α) or − yi 5 f(α)i < m(α)}.
There is k such that after k > k, every αk

i , i ∈ I has
reached the unique and bounded optimal solution.
It remains the same in all subsequent iterations
and i ∈ I is not in the following set:

{t | M(αk) ≤ −yt 5 f(αk)t ≤ m(αk)}. (3)

The software LIBSV M 5 shrinks the αi consider-
ing set (3), while SV M light is based on the idea
that any αi which has stayed at the same bound
for a certain number of iterations can be removed.

Caching strategy can effectively improve the ef-
ficiency of procedures and save training time. How-
ever, in large-scale data processing, as lack of mem-
ory space, caching strategy has to be used. There
are two different relatively simple caching strategies
in existing software. The software LIBSV M im-
plements a simple least-recent strategy for caching.
It dynamically caches only recently used kernel of
QBt . Its details are shown in table 5.

And the idea of SV M light, which is based on
the least-used strategy, is similar with LIBSV M ’s
least-recent strategy. Therefore, its strategy is to
preferentially delete the αi, which is the least num-

5As the implement of HMG is updated from software
LIBSV M , it uses the same shrinking and caching tech-
niques as LIBSV M .

fB(t) is the sub-optimal problem defined at [4].
1 If t = 1
2 Select arbitrary B1 = {b1, b2}, yb1 6= yb2

3 Else
4 If ∀i ∈ B(t−1) : αi ≤ η · C ‖ αi ≥ (1− η) · C
5 i ∈ arg max

t
{−yt 5 f(αk)t | t ∈ Iup(αk)},

6 j ∈ arg min
t
{−yt 5 f(αk)t | t ∈ Ilow(αk)},

7 Else
8 select pair B(t) = {b1, b2 | arg max

b1,b2
fB(t) ,

9 where b1 ∈ B(t−1), b2 ∈ {1, ..., l},
10 Return B(t) = {i, j}.

Table 4: Hybrid Maximum-Gain 0 < η ¿ 1

1 Using a circular list to record α
2 If αi’s kernel is called
3 Add αi to the tail of the circular list
4 If not sufficient memory space for αi

5 release αj from the circular list’s head
6 until sufficient memory space for α.
7 End
8 End

Table 5: Caching in LIBSV M

ber of kernel used, in the current cache. Also, de-
tails are shown in table 6.

5. An improved caching strat-
egy

Currently, the focus of decomposition algorithm is
how to select the working set. The most popu-
lar algorithm is using the second-order informa-
tion of the sub-optimal problem to select working

1 Using a circular list to record α
2 Using a counter cnti to record each αi

3 If αi’s kernel is called and
4 the cnti = cnti + 1 Then
4 Add αi to the tail of the circular list
5 If not sufficient memory space for αi

6 release αj which is the least cntj
7 until sufficient memory space for αi.
8 End
9 End

Table 6: Caching in SV M light

1 Using a circular list to record α
2 update αold

i → αnew
i

3 If αnew
i < ε ‖ αnew

i > C − ε
4 set αi as preferentially to delete
5 Else
6 set αi as not preferentially to delete
7 End
8 If αi’s kernel is called
9 If not sufficient memory space for αi And
10 the αj is preferentially to delete Then
11 release αj

12 Until sufficient memory space for αi.
13 End
14 End

Table 7: A New Caching Strategy

set. Just as mentioned in section 3, there are two
main working set selection algorithms using second-
order information: HMG and LIBSVM-2.8. The
difference between LIBSVM-2.8 and HMG work-
ing set selection algorithm, which are specified in
table 3 and 4 respectively, is that they use dif-
ferent way to solve the similar second-order sub-
optimal problem. Although the working set selec-
tion algorithm decides the training process, differ-
ent strategies of shrinking and caching will have
different effect on saving time. As far as shrink-
ing and caching are concerned, the implement of
HMG is the same as LIBSVM-2.8. Compared to
LIBSV M , SV M light uses first-order information
of the sub-optimal problem to select working set,
as well as different shrinking and caching strategies.
This paper focuses on proposing a generic caching
strategy that is based on the combination of work-
ing set selection algorithm and shrinking strategy.
The specific strategy can be referred to table 7.

This strategy fully takes into account the inter-
dependency of the working set selection, shrinking
and caching, which are three different main aspects
in the special optimization problem of SVMs. As in
the HMG working set selection algorithm, if current
αi ∈ B is in the border, this αi will have a great
probability of not being re-selected. Meanwhile in
the LIBSV M , the nature of shrinking algorithm is
also removing the border αi from the training set.
As we already know the fact that some samples will
no longer be selected into set B, we can base on this
real-time information to improve caching strategy.
As in the table 7, if αnew

i < ε ‖ αnew
i > C − ε,

the αnew
i will have a great probability of not being

re-selected to set B. Based on the above consid-
erations, we present this generic caching strategy,

Data set # data # feature # class
a9a 32,561 123 2
ijcnn1 49,990 22 2
w8a 49,749 300 2
protein 14,895 357 3
usps 7,291 256 10

Table 8: Data Statistics

which is preferentially to delete the αi on the bor-
der. This strategy is not ever considered in early
implement. Now, we propose the kernel evaluation
rate for evaluation criteria :

Rateke =
total kernel evaluations

total kernel calls
(4)

Total kernel evaluations refers to the actual amount
of computation kernel, while total kernel calls refers
to the actual demand of kernel. Clearly, caching
will not affect the iteration of training process, the
entire iterative process is decided by the working
set selection algorithms. But as a caching strategy,
a lower kernel evaluation rate means that more ker-
nel evaluations are avoided. This can be calculated
from the total amount of kernel evaluation, a com-
mon evaluation criteria, to be tested.

6. Experiments

In this section we use LIBSV M software as our
benchmark. We will adapt the caching strategy of
the primitive LIBSV M to Bound (we proposed)
and Used(caching strategy in software SV M light).
we name primitive LIBSV M ’s caching strategy as
Recent. With such three caching strategies imple-
ment, comparison will be performed between these
three versions.

Five data sets(a9a, ijcnn1, w8a, protein and
usps)6 are considered and we only take classifica-
tion for comparison. We compare the performance
of our caching strategy against the existing ones.
Data statistics are specified in table 8.

6.1. Experimental settings

We know that the SVMs can be used for classifica-
tion, one class, regression and density estimation.
We use classification, the basic usage of SVMs, to

6All data sets presented in this paper are available at
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

evaluate different caching strategies. In classifica-
tion, different SVMs parameters such as C in (1)
and kernel parameters affect the training proce-
dure. It is difficult to evaluate the three caching
strategies under every parameter setting. Here we
use the similar experiments setting as [4]. To have
a fair comparison, we simulate how one uses SVMs
in practice. We consider two following training pro-
cedures:

1. ”Parameters selection”: using five-fold cross
validation to find the best parameters.

2. ”Final training”: train the whole set.

In ”Parameters selection” step, we use a fixed small
caching space to evaluate the three caching strate-
gies, while in ”final training” step, we use various
caching space. Each step will be with or without
shrinking. For simpleness, we only use the RBF
kernel(γ = 1 for this experiments):

K(xi, xj) = e−γ‖xi−xj‖2 (5)

For completeness we give the details of experiment
platform here. The experiments are reported to
have been carried out on a 2.4 GHz Pentium 4
processor with 512M of RAM running cygwin, us-
ing g++ 3.4.4 compiler.

6.2. Comparison and analysis

We train SVMs on all data sets as shown in Table
8 to compare these three caching strategies. The
kernel evaluation rate(4) is used as the evaluation
criteria of performance. Results are shown in table
9 and table 10. Table 9 shows results of ”Parame-
ters selection” procedure, which uses fixed caching
space(10Mb) and different C varying among 1, 10
and 100. Table 10 is for the ”Final training” proce-
dure. It uses the same C(100), but different caching
space(from 10 to 200). In the table 9 and table 10,
the lowest values are boldfaced, which mean more
kernel evaluations are saved.

As the number of kernel evaluation is indepen-
dent of the caching space, the training time is pro-
portional to kernel evaluation rate. In the ”Fi-
nal training” procedure, the processes of training
with the three caching strategies are same, which
means the total numbers of kernel evaluation are
also same, while the caching spaces are different.
Table 10 shows that the Bound caching strategy
performs best and the Used is the worst among the
three caching strategies. In our version of Used, if
the sample is deleted from the circular list, the cnti
will be set 0. This might be not appropriate. We
leave it for the further work.

strategy
a9a,No shrinking
1 10 100

Recent 0.374 0.412 0.534
Used 0.412 0.547 0.647
Bound 0.368 0.402 0.532

a9a, shrinking
1 10 100

Recent 0.418 0.429 0.412
Used 0.425 0.459 0.584
Bound 0.420 0.427 0.410

ijcnn1,No shrinking
1 10 100

Recent 0.384 0.339 0.311
Used 0.404 0.429 0.586
Bound 0.379 0.327 0.303

ijcnn1, shrinking
1 10 100

Recent 0.408 0.411 0.424
Used 0.412 0.464 0.490
Bound 0.408 0.411 0.421

w8a,No shrinking
1 10 100

Recent 0.410 0.457 0.493
Used 0.453 0.559 0.632
Bound 0.395 0.443 0.491

w8a, shrinking
1 10 100

Recent 0.435 0.433 0.341
Used 0.457 0.540 0.570
Bound 0.433 0.422 0.336

protein,No shrinking
1 10 100

Recent 0.387 0.242 0.303
Used 0.402 0.606 0.468
Bound 0.387 0.230 0.290

protein, shrinking
1 10 100

Recent 0.412 0.380 0.397
Used 0.428 0.446 0.594
Bound 0.416 0.378 0.390

usps,No shrinking
1 10 100

Recent 0.212 0.069 0.053
Used 0.212 0.069 0.053
Bound 0.212 0.069 0.052

usps, shrinking
1 10 100

Recent 0.212 0.069 0.054
Used 0.212 0.069 0.054
Bound 0.212 0.069 0.054

Table 9: caching space=10Mb,cv = 5 fold,C=?

strategy
a9a,No shrinking
10 20 40 100 200

Recent 0.569 0.501 0.375 0.105 0.047
Used 0.645 0.642 0.610 0.590 0.505
Bound 0.568 0.499 0.370 0.094 0.038

a9a, shrinking
10 20 40 100 200

Recent 0.433 0.393 0.349 0.282 0.218
Used 0.593 0.577 0.556 0.524 0.485
Bound 0.431 0.391 0.345 0.276 0.214

ijcnn1,No shrinking
10 20 40 100 200

Recent 0.373 0.244 0.150 0.115 0.105
Used 0.573 0.572 0.563 0.326 0.287
Bound 0.365 0.230 0.125 0.099 0.099

ijcnn1, shrinking
10 20 40 100 200

Recent 0.436 0.410 0.375 0.337 0.318
Used 0.493 0.488 0.478 0.463 0.457
Bound 0.435 0.407 0.370 0.335 0.317

w8a,No shrinking
10 20 40 100 200

Recent 0.523 0.433 0.273 0.053 0.032
Used 0.636 0.621 0.534 0.479 0.349
Bound 0.521 0.429 0.265 0.042 0.028

w8a, shrinking
10 20 40 100 200

Recent 0.400 0.267 0.194 0.136 0.100
Used 0.570 0.544 0.517 0.483 0.298
Bound 0.396 0.260 0.187 0.126 0.088

protein,No shrinking
10 20 40 100 200

Recent 0.412 0.191 0.110 0.078 0.060
Used 0.611 0.604 0.590 0.507 0.274
Bound 0.399 0.168 0.087 0.061 0.052

protein, shrinking
10 20 40 100 200

Recent 0.432 0.369 0.299 0.224 0.172
Used 0.594 0.587 0.565 0.440 0.244
Bound 0.425 0.358 0.280 0.187 0.153

usps,No shrinking
10 20 40 100 200

Recent 0.052 0.052 0.052 0.052 0.052
Used 0.052 0.052 0.052 0.052 0.052
Bound 0.052 0.052 0.052 0.052 0.052

usps, shrinking
10 20 40 100 200

Recent 0.054 0.054 0.054 0.054 0.054
Used 0.054 0.054 0.054 0.054 0.054
Bound 0.053 0.053 0.053 0.053 0.053

Table 10: C=100,caching space=?(Mb)

Experiments with large caching space show
that the caching strategy is very important to save
time. If the caching space is sufficient enough, the
Rateke will be very low, leading to great reduction
of kernel evaluation. For example, Bound achieves
0.028 of Rateke in w8a data set of table 10, when
no shrinking is used and caching space is set 200.

Usps data set is a multi-class problem. All
three strategies on this data set show good similar
performance(the Rateke is very low, around 0.05).
There are two main explanations leading to such
an outcome, one is that the software LIBSV M de-
composes a multi-class problem into pairwise bi-
nary classification problems. The size of training
set becomes small. The other is that the size of
each class is small. Therefore, even if the caching
space is small, it is enough for those one-against-
one binary classifications.

In Table 10, all results show that Bound per-
form best in all settings. In Table 9, Bound per-
form best in most settings, but we also note several
results of Recent are better than Bound. A reason-
able explanation is that the data sets are different
because of the randomness produced in the process
cross validation.

Overall, all results in Table 9 and Table 10 are
further less than 1, which demonstrate that the
caching strategies are effective to reduce the com-
putational complexity. Probabilities of examples
being selected in working set mainly contribute to
the efficiency of caching. By considering probabili-
ties of examples being selected in working set, our
caching strategy achieve best performance on most
of data sets.

7. Conclusions

Working-set selection, caching and shrinking are
three components which are related to the compu-
tational complexity of the training SVMs. Previous
works mainly focused on the working-set selection,
while only a little works focused on the caching
and shrinking strategies. In this paper, we propose
an improved caching strategy, taking into account
probabilities of samples being selected into working
set in the training of SVMs. Experimental results
on several benchmark data sets show the perfor-
mance of our strategy is better than existing ones
used in LIBSV M and SV M light.

In the current stage we mainly deal with
caching strategy. Good combination of decom-
position algorithms, shrinking and caching strate-
gies may further improve the efficiency of training

SVMs. Our further work will focus on this combi-
nation.

References

[1] V. Vapnik. The Nature of Statistical Learning
Theory. Springer Verlag, 1995.

[2] I. B.E.Boser and V.N.Vapnik. A training al-
gorithm for optimal margin classifiers. In D.
Haussler, editor,Proceedings of the 5th Annual
ACM Workshop on Computational Learning
Theory,ACM Press, pages 144–152, 1992.

[3] Nello Cristianini and John Shawe-Taylor An
Introduction to Support Vector Machines and
Other Kernel-based Learning Methods, Cam-
bridge University Press ,2000.

[4] R.-E. Fan, P.-H. Chen, and C.-J. Lin. Working
set selection using second order information for
training SVM. Journal of Machine Learning
Research, 6:1889–1918, 2005.

[5] C. I. Tobias Glasmachers. Maximum-gain work-
ing set selection for svms. Journal of Machine
Learning Research, 7:1437–1466, July 2006.

[6] T. Joachims. 11 in: Making Large-Scale SVM
Learning Practical.Advances in Kernel Methods
- Support Vector Learning. B. Schölkopf and C.
Burges and A. Smola (ed.), MIT Press, 1999.

[7] R. F. E. Osuna and F. Girosi. Improved train-
ing algorithm for support vector machines. In J.
Principe, L. Giles, N. Morgan, and E. Wilson,
editors, Neural Networks for Signal Process-
ing,IEEE Press,, VII:276–285, 1997.

[8] J. Platt. Fast training of support vector ma-
chines using sequential minimal optimization.
In B. Schölkopf, C. J. C.Burges, and A. J.
Smola,editors, Advances in Kernel Methods
- Support Vector Learning, chapter 12, pages
185–208. MIT Press, 1999.

[9] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya,
and K. R. K. Murthy. Improvements to
Platt’s SMO algorithm for SVM classifier de-
sign. Neural Computation, 13:637–649, 2001.

[10] C.-C. Chang and C.-J. Lin. LIB-
SVM: a library for support vector ma-
chines, 2001. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

[11] P.-H. Chen, R.-E. Fan, and C.-J. Lin. A study
on SMO-type decomposition methods for sup-
port vector machines. IEEE Transactions on
Neural Networks, 17:893–908, July 2006.

