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Abstract  
In this paper, Genetic Algorithm (GA) is used to train 
the parameters of Discrete Hidden Markov Model 
(DHMM). To overcome the premature convergence in 
GA, a chaotic migration strategy is introduced to the 
pseudo parallel genetic algorithm to increase the 
diversity of population. Because the GA’s evolution 
speed is very slow, the Baum-Welch is applied to the 
GA. A floating matrix encoding mechanism is used for 
reflecting internal relations consisted in parameters of 
DHMM. This encoding method reduces the searching 
range of solutions space and increases the searching 
efficiency further. By using GA, the number of states 
can be adjusted dynamically. At last, the proposed 
method is used for signature verification. The 
promising experiment result indicates that the chaotic 
migration-based GA can optimize DHMM effectively.  

Keywords: Genetic algorithm, Hidden markov model, 
Chaos, Migration strategy 

1. Introduction 
By the supporting of mature mathematics theory and 
successful application in automatic speech recognition, 
hidden markov model (HMM) as a classic statistic 
pattern recognition method has become increasingly 
popular in the last decade and has been applied to 
more application system such as handwriting 
recognition [1], face recognition [2] and on-line 
signature verification [3]. In our previous work [4], we 
applied discrete hidden markov model (DHMM) to 
off-line Chinese signature verification and gained a 
promising result.  

As a complex model, there are many parameters, 
such as number of states, size of symbols and the 
topology of states etc to be decided before using 
classic Baum-Welch algorithm to train the DHMM. 
The Baum-Welch algorithm, which is a Maximum 
Likelihood method, is exploring for only one local 
maxima in practice. This method can not recover from 
the local maxima to obtain the global maxima or other 
more optimized local maxima, which causes the final 

model depends on the initial model much. If the data 
for training is not enough, there maybe many zero 
probability among parameters of DHMM using Baum-
Welch algorithm to train the DHMM. Furthermore, the 
fixed number of states is not propitious for generating 
a more fitting model for each class. 

Genetic Algorithm (GA) is a robust general-
purpose optimization technique which evolves a 
population of solutions [5]. GA mimics nature 
evolution and performs global searching within the 
defined searching space. There are some literatures 
using GA to optimize HMM. By using GA for HMM 
parameters optimization, Sun et al [6] got better 
recognition rate than using Baum-Welch algorithm. 
He et al [7] used GA to train HMM to recognize 
isolated English word. In their method, the fitness 
function is not the likelihood of the model but the 
minimum classifier error rate. Chou et al. [8] 
presented a GA-HMM in which the hmm parameters 
are trained using GA. Because the initial population is 
generated using a random method, the GA-HMM 
needs great number of evolution generation. In 
addition, the number of state and the size of symbols 
must be pre-determined. So in literature [9], they 
optimized the structure and parameters of the HMM 
simultaneously for TIMIT corpus recognition, and got 
a better recognition rate. In literature [10], the authors 
used GA to evolve the structure of HMM, and applied 
Baum-Welch algorithm to train parameters of HMM 
having determinate structure. This method used Baum-
Welch for training essentially. GA was just used for 
optimize the logic structure of the model. All these 
methods have some disadvantages, such as great 
number of evolution generation, converging to a local 
optimal solution etc. Based on the fact that increasing 
the diversity of population is help for recovering from 
the local optimal solution, Liu et al [11] presented a 
chaotic anneal genetic algorithm to train HMM 
parameters for hand gesture recognition. In this paper, 
a chaotic migration strategy is used to alter standard 
genetic algorithm for improving diversity of the 
population and increasing the possibility of 
converging to the global optimization solution. Then 
the altered GA is used to train the DHMM parameters 
for Chinese signature verification.  



2. DHMM for Signature 
Verification 

Usually, a HMM is characterized by the following: 
0) N, the number of the states in the model. We 

denote the individual state θ={θ1, θ2, …, θN} 
and the state in the time t qt 

0) M, the number of distinct observation symbols 
per state. We denote the individual symbol 
V={V1, V2, …, VM}and the observation symbol 
in the time t Ot. 

0) A, the state transition probability matrix. 
A=(aij)N × N , where aij=P(qt+1=θj | qt=θi),
 1≤ i, j≤N. 

0) B, the observation symbol probability matrix. 
B=( bj(k))N×M , where bj(k)=P(Ot =Vk | qt=θj),
 1≤  j≤N and 1≤ k≤M.  

0) Π, the initial state probability vector. Π=(π1, 
π2, …, πN), where πi=P(q1=θi), 1≤ i≤N. 

It can be seen from above discussion that the 
parameters N and M are implied by A and B. So, for 
convenience, a HMM is often represented by the 
compact notation λ=(A, B, Π). According to the 
definition of A and B, the state transition probability 
and observation symbol probability must satisfy the 
following condition: 
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Given a observation sequence O=O1O2…Oг and a 
model λ=(A, B, Π), we can use forward-back algorithm 
to calculate P(O|λ), the probability of observation 
sequence O, given the model. On the contrary, using 
Baum-Welch algorithm the parameters of a model λ 
can be adjusted to augment P(O|λ), given the 
observation sequence O. 

3. Pseudo parallel GA for 
optimizing DHMM 

As a global searching method, GA provids a chance 
which allows the searching process to escape from 
local maxima and to obtain a global maxima or at least 
other more optimized local maxima. By the evolution 
of population, GA can avoid too many zero probability 
of observation symbol brought by Baum-Welch for 
lacking of training data. In addition, through the use of 
good genetic operators, GA can improve the adverse 
effects of depending on initial model of Baum-Welch 

training method remarkably. But, if the initializing 
population is completely random process, GA needs a  
large number of evolving iterations to converge. So, 
we divide the initial population into two parts 
initialized in two different methods. The first one 
initialized with Baum-Welch, second with random 
generator. Then the global population is divided into 
some subpopulations. Each subpopulation evolves 
using different system parameters. To avoid the model 
“overfit” to training data, our training data are divided 
into two parts. One used for Baum-Welch to train the 
first initial parts, the other used for evaluating the 
fitness.  Figure 1 shows the whole procedure of using 
GA to optimize DHMM. 
 

 
Fig. 1: The procedure using GA to optimize DHMM. 

3.1. Encoding mechanism and 
fitness evaluation 

It can be seen from the description of section 2 that 
there exist internal relations among parameters of 
HMM (represented by equation 1). The floating string 
encoding mechanism used by Chou [8] cannot reflect 
these relations. Furthermore, using this encoding 
method the number of states must be fixed. So, we use 
floating matrix encoding mechanism to represent the 
solution. Combined with fitting genetic operators, this 
encoding method is more fitting for optimizing 
DHMM. The past research indicates that compared 
with A and B, Π has low influence for model’s 
performance. In view of this, a solution is encoded 
using real-valued and directly represented by 2 
matrices λ=(A, B). 

Let n denote the size of the second training set for 
each class; Oi is the observation sequence of training 
sample i in training set; li denote the length of 
observation sequence Oi; λμ represent the solution μ.  
The fitness evaluation function used in GA can be 
mathematically formalized by  
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3.2. Genetic operators 
Two basic types of operators: crossover and mutation 
are used to create new individual based on existing 
individuals in the population. They provide the basic 
search mechanism of the GA. 

When the training data is not enough, using 
Baum-Welch to train the model often bring too many 
zero probability of observation symbol for each state. 
One solution usually used to resolve this problem is 
combining two models λ1 and λ2 into one model λ. 
This idea can be mathematically formulated as 
following: 

λ=ελ1+(1-ε)λ2, ε Є [0, 1]. (3)

Here, ε represents the weighting of the parameters of 
model λ1, and (1-ε) represents the weighting of the 
parameters of model λ2. It is consistent with the 
floating arithmetic crossover operator developed by 
Michalewicz [5] when ε Є (0, 1). If ε Є (-1, 0) and λ2 
is better than λ1 in terms of fitness value, it is 
consistent with the floating heuristic crossover 
operator. A key issue using this method is to 
determine the optimal value of ε. Because GA is a 
global search method, we randomly select the value of 
ε, namely, ε=U(0,1). U(0,1) is uniform distribution 
probability. The corresponding part between λ1 and λ2, 
such as A1 and A2, 

1
1B and 1

2B , and 2
1B and 2

2B , are 
calculated using formula 3 to obtain the new model 
λ=(A, B1, B2). Because the N1 may be not equal to N2, 
we adjust dimension of the  matrices of the model 
which is worse than the other’s in terms of fitness. The 
adjustment process is shown in figure 2. All the 3 
matrices must be normalized to satisfy the condition 
denoted by formula 1. It is worth further exploration 
whether the A should be normalized to maintain the 
model structure unchanged. In our experiment, we 
normalize A to keep the model structure as left-right 
structure. 
 

 
Fig. 2: Matrix adjusting process. All elements of Matrix Z is 
zero. 
 

Mutation operator is very important for the 
searching process of the GA to escape from local 
maxima and to obtain global maxima or at least other 
more optimized local maxima. Floating uniform 
mutation method is used to finish this task. After 

mutation, the same normalization process for 
satisfying the condition denoted by formula 1 must be 
executed. 

The selection of individuals to produce successive 
generations plays an extremely important role in a 
genetic algorithm. Normalized geometric ranking [5] 
method is a common selection operator. When all 
individuals have been sorted in descending order 
according to fitness value, the probability of selecting 
individual i is calculated as following: 

Pi=q’(1-q)i-1. (4)

Here, q is the probability of selecting the best 
individual, which is a system parameter of the GA; 
q’=q/(1-(1-q) n), n is the size of population. The 
individuals of the next generation are selected from 
the previous generation and the new set of individuals 
created with crossover and mutation operators. To 
avoid the premature convergence, we divide the next 
generation into two parts. The first part is selected 
using normalized geometric ranking method discussed 
above. The second part is randomly selected according 
to uniform probability distribution. Furthermore, to 
ensure the fitness of the best individual in every 
population is a rising value, the best individual of one 
population must be selected to be one individual of the 
next generation. 

3.3. Chaotic migration strategy 
In parallel genetic algorithm, there are m 
subpopulations. Each subpopulation is evolved using 
different system options, such as different selection 
options, different crossover fraction, different 
mutation options etc. Migration provides a chance of 
information exchanging between different 
subpopulations. Solution’s migration improves the 
diversity of the global population. A classic migration 
strategy is that the best solution of the nth 
subpopulation is copied to the (n+1)th subpopulation. 
The direction of migration may be forward or both 
(the nth subpopulation migrates into the (n-1)th 
subpopulation and the (n+1)th subpopulation). This 
method copies the best solution of the nth 
subpopulation to the next, but the best solution usually 
is not help for recovering from the local maxima. So, 
in our method the chaotic migration strategy is used.  

Suppose there are m subpopulations: gt
1, gt

2, …, 
gt

i, …, gt
m. The size of each subpopulation is st

1, 
st

2, …, st
i …, st

m. Give each solution a series number. 
Such as, in the ith subpopulation gt

i = {xi
t(1), 

xi
t(2), …,xi

t(st
i)} the series number of each solution is 

Li = {li | li=1, 2, …, si}. All these subpopulations are 



combined to a global population: Gt = { gt
1, gt

2, …, 
gt

i, …, gt
m }. Each solution in the Gt has a series 

number: L = {l | l = 1, 2, …, S}. Here, S is the size of 
the Gt: ∑= m

isS . Each solution’s two 

series number has the following relationship: 
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After the series number of each solution is 
decided, we can apply chaotic migration strategy to 
these subpopulations. The Logistic map Chaos model 
is used to generate the chaotic series: 

}.,,,,,{ 21 mk ωωωω LL=Ω Here, m is the 
number of the subpopulations. Then the real series is 
mapped to integral series: 

},,,,,{ 21 mk υυυυ LL=Θ , according to the 
following formula. 
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Here, “ ⎣ ⎦ ” is a function of round down to the nearest 
integer. The migration process can be described as 
follow.  

Step 0. Let k=2, the (k-1)th solution and kth 
solution are exchanged, i.e. xt(v(k-1))←→

xt(v(k)); 
Step 0. Let k=k+1, exchange two solutions, i.e. 

xt(v(k-1))←→xt(v(k)); 
Step 0. If k<n go to step 2, else end 

migration process. 

4. Signature verification experiment 

4.1. Using DHMM for off-line 
signature verification 

In our previous paper [4], firstly a signature image is 
thinned to gain the skeleton of the signature images 
binary scanned. Then a segmentation algorithm is used 
to gain a set of segmentation of signature. At last a six 
dimensions feature vector is extracted from each 
segmentation. The grouping vector quantization 
method brings little change for the notation of a HMM. 
The six-dimension feature vector is divided into two 
groups according to the physical significance. Two 
groups are quantized respectively. The observation 
symbol probability is divided into two parts. So, the 
notation λ of a HMM change to λ=(A, B1, B2, Π). 
Furthermore, we use the left-right structure model. 

Figure 3 shows the structure of this mode. There is no 
in-depth discussion for how to determine the 
appropriate number of states for each writer and the 
number of observation symbols in paper [4]. 

In this paper, the experiment data, feature 
extraction, vector quantization and the logic structure 
of model are the same with these in our previous paper 
[4]. A set of signatures coming from 32 writers makes 
up the signature database. There are 18 genuine 
samples, 8 simple forgeries and 5 simulated forgeries 
and 124 random forgeries for each writer. The genuine 
samples are divided into two parts. One used for 
training stage include 12 genuine samples. The other 6 
genuine samples, all 8 simple forgeries, 5 simulated 
forgeries and 124 random forgeries consist of the test 
data for each writer. According to description above, 
the training data includes two parts. The first part is 
consisted by 6 genuine samples, and the second part is 
consisted by the other 6 genuine samples. 

 
 
      θ1                      θ2                      θ3                       θ4 
 

Fig. 3: A four states left-right model. 

4.2. Experiment Results 
Because GA and Baum-Welch can make up the 
shortness of each other, they are combined to training 
DHMM. GA provides a chance which allows the 
searching process to escape from local maxima and to 
obtain a global maximum or at least other more 
optimized local maxima. Using Baum-Welch to 
generate the parts of initial solutions decreases the 
evolution generation of GA. In the first experiment, 
the performances of GA in two situations that one is 
the initial solutions are generated randomly and the 
other is parts of the initial solutions are generated 
using Baum-Welch are compared. Figure 4 shows the 
comparison result. It can be seen from this figure, not 
only the initial population of using Baum-Welch is 
better than that of no Baum-Welch, but also the 
velocity of convergence is quicker when using Baum-
Welch. 

In second experiment, the no optimization model 
and the model optimized with chaotic migration-based 
GA are used for the first writer’s signature verification 
respectively. The system parameters used in GA are 
given in table 1. Verification results are shown in 
figure 5. The six samples pointed in box are genuine 
sample the others are forgeries. It can be seen from 
figure 5, the model optimized with GA is more 
propitious for forgeries identifying. There are only 3 



forgeries whose verification value is bigger than 0.3 in 
optimized model. The corresponding number is 7 in no 
optimization model. Furthermore, majority forgeries’ 
verification value is smaller than 0.1 in optimized 
model. In no optimization model there are many 
forgeries whose verification value is bigger than 0.1. 

To compare the chaotic migration to the best 
solution migration (BSM), we carry out 5 verifications 
using DHMM optimized with chaotic migration-based 
GA and the DHMM optimized with BSM-based GA 
respectively for verifying all 32 writers’ test signatures 
(each writer has 143 test signatures) in the third 
experiment. Table 2 gives the result of this experiment. 
Both HMM and GA have heuristic property, so the 
result of chaotic migration-based GA isn’t always 
better than the BSM-based GA. But the average value 
indicates the chaotic migration-based GA improves 
the correct rate of verification. This can be more 
clearly seen from figure 6. One hundred verifications 
for all 32 writers’ test signatures (each writer has 143 
test signatures) are carried out using two kind of GA 
respectively in forth experiment. Figure 6 shows the 
comparison of two sets of average error rate. 
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Fig. 4: The comparison of GA’s performances in two 
different situations. 
 

Using floating matrix encoding mechanism 
provides a chance for adjusting the number of states 
dynamically. Comparing to using fixed number of 
states, adapting number of states is more propitious to 
create unique signature model for each writer. Table 3 
gives the comparison of number of states. Baum-
Welch is used repeatedly to train 40 models for each 
writer. The state numbers of the 40 models consist of 3 
to 10. For each number, five models are trained using 
Baum-Welch. The model which fitness value is 
maximal is selected to count the number of states 
which consist the values of the row of “NO GA”. The 

values of “NO GA” only include two numbers: 9 and 
10. In “Having GA” the values are a few more 
scattered. 
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Fig. 5: The comparison of verification result between having 
GA and no GA. 

 
Parameter Value 

Population size 100 
Subpopulation size 20 

Iteration 300 
Selection Probability 0.06~0.08

crossover fraction 0.6~0.8 
mutation probability 0.02~0.06

Table 1. The system parameter of the GA. 
 

 
Fig. 6: Comparison of two sets of average error rate. 

5. Conclusions 
The experiment results indicate chaotic migration-
based GA is effective for optimizing DHMM. Chaotic 
migration-based GA has a higher probability in 
finding global maxima or at least local maxima with 
better performance. But if the initial solutions are 
generated randomly, GA needs a substantial number 
of evolution generations. GA and Baum-Welch can 
make up the shortness of each other. Combining GA 



and Baum-Welch to train DHMM can get more 
optimization model. 

Although we applied two kinds of initial and 
selection mechanism, a larger mutation probability and 
the chaotic migration strategy, the premature 
convergence isn’t completely eliminated. Furthermore, 
GA brings a tremendous amount of calculation. How 
to solve these problems will be the main work in 
future. 
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  1 2 3 4 5 Average 

FRR 8.33 5.73 6.25 8.33 4.17 6.56 
BSM (%) 

FAR 5.63 6.48 6.34 5.5 6.55 6.1 
FRR 5.21 6.77 6.25 4.17 5.73 5.63 Chaotic migration 

(%) FAR 5.52 4.68 5.38 5.79 5.47 5.37 
Table 2. The verification results compare between BSM and chaotic migration. Where, FRR is fault-rejected 

rate, FAR is fault-accepted rate. 
 

No. of Writer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
No GA 10 9 9 10 9 10 10 9 9 10 10 10 10 10 10 9 Number  

of states  Having GA 10 9 8 10 5 8 9 10 6 3 10 7 10 7 6 7 
No. of Writer 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

No GA 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Number  
of states Having GA 10 9 6 5 10 5 10 9 10 3 9 6 6 8 7 4 

Table 3. The comparison of number of states between having GA and no GA. 
 


