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Abstract  

This paper studied an ordering problem under non-
stationary setting. It used the online algorithm with 
risk-reward that is a combination of probability 
analysis and classical online algorithm. We obtained 
an online risk base stock policy whose risk was 
restricted to a tolerance level by designing online 
strategy based on forecasting. The strategy gain 
reward if forecasting successful, the risk is acceptable 
if unsuccessful. The decision-makers can design 
online strategy to improve performance in the light of 
his risk tolerance level.  
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1. Introduction 
The perishable commodity problem, also known as 
newsboy problem, is to find the optimal order quantity 
that maximizes the expected profit under uncertainty 
demand. If any inventory remains at the end of the 
period, a discount is used to sell it or it is disposed 
of；If the order quantity is smaller than the realized 
demand, the newsboy suffers some penalty because of 
shortage [1]. The model assumes that the demand in 
each period are independent and identically distributed 
(i.i.d.) continuous random variables. 

Interest in this problem has increased the last 
decade since the newsboy problem was fist introduced 
by Within (1955)[2]. A variety of extensions to the 
newsboy problem have been presented and researched, 
one of the important extensions is to describe different 
states of information about demand since the optimal 
order quantity depends on an exact probability 
distribution that is different in the different situations, 
and lack of demand visibility is usually considered as 
a major challenge for efficient inventory management. 
Scarf (1958) assumed that only the mean μ and 
variance 2σ of demand are known and derived in 
closed-form the optimal quantity which maximizes the 
expected profit against the worst possible distribution 

of demand [3]. Shih (1973) applied a Bayesian 
methodology to the newsboy problem [4]. Moon and 
Choi (1995) maximizes the expected profit against the 
worst possible distribution of demand for a 
distribution free newsboy problem with balking [5].  
Baruch and Joseph (2005) researched the ordering 
policy of the risk-averse newsboy that assumed the 
random demand is uniformly distributed between 
lower bound and upper bound [6].  

To design optimal ordering policy under 
uncertainty demand is a typical online problem in 
inventory management that online managers have to 
decide instantaneously ordering quantity to meet 
demand when they don’t know the future information 
about demand. For the online problems, the traditional 
approach is that managers describe probability 
distribution as in [2]-[6] in the light of personal 
experience to look for the optimal policy maximizing 
the expected profit. However, it is very difficult for 
managers to describe exactly probability distribution 
in real situations because the demand is affected by 
lots of factors, real distributions in computational 
setting are almost always very different from any 
theoretical distribution assumed in an average case 
analysis. In such case, the optimal policy is risky, 
perhaps bring about bad performance. In fact, the most 
managers are risk averse and eager to trade some 
expected value to reduce the downside risk. Recently, 
online algorithm has been gaining recognition for 
being a complementary approach in the analysis of 
decision making under uncertainty. In the approach a 
player designs online strategy, in which player has no 
knowledge of future demand, is compared with the 
performance of offline strategy that has knowledge of 
entire future and operates optimally. This technique of 
evaluating an online strategy by comparing its 
performance to the optimal offline strategy is called 
competitive analysis and was first used by Sleator and 
Tarjan(1985)in [7]. This is not the place for a lengthy 
discussion of the merits of online algorithm compared 
with those of probability analysis; the interested reader 
may refer to the introductory textbook [8]. The online 
algorithm [13]-[16] has been used widely include 
foreign currency exchange, mortgage refinancing and 



portfolio management [9]-[10]since it  has been first 
introduced in list update and paging rules. In classical 
online algorithm, the player designs online strategy 
when he doesn’t know absolutely future information, 
so the online strategy is certain and riskless. 

  In this paper the online algorithm with risk-
reward is a combination of probability analysis and 
classical online algorithm. The approach assumed that 
online player couldn’t describe probability distribution 
of future demand, but he could forecast the lower 
bound and upper bound of future demand in the light 
of personal experience while he beat acceptable risk 
level. The players design risky online strategy in the 
base of forecast, the performance of online strategy 
became better if the forecast was correct. The range of 
demand forecasted is different if risk preference level 
is different. The higher the risk preference is, the 
smaller the range of demand forecasted is, the better 
the performance of online strategy is if forecast is 
correct. The improvement of the performance of risky 
online strategy over that of the optimal riskless online 
strategy is looked up as the reward that player bear 
risk. 

2.  Online model with risk-reward 

2.1. Problem description 
In the uncertain demand setting, the managers employ 
base stock policy to meet future demand, the inventory 
system is reviewed once in a period, the replenishment 
is instantaneous (0 lead time). When the demand 
exceeds the ordering quantity in a period, excess 
demand is backlogged until it is subsequently filled by 
a delivery, but a shortage penalty h  is paid by the 
buyer to his customers for each unit of unfilled 
demand [11]. The remains must be disposed of, v  is a 
salvage value for each unit of inventory remaining at 
the end of each period. Let 

i
D denote the demand in 

period i . Let iS be the order up to level at the 
beginning of period i , the inventory position after the 
order has been placed. The order quantity iq , at the 
beginning of period i  should satisfy the following 
relationship: 

 }{ 1 1max ,( )0 i iiiq S D S− −= + −  

This is because the remains must be disposed of and 
excess demand is backlogged. 

Three costs are incurred during each period which 
influences the order up to level iS . There is an 
ordering cost c  per unit, which is paid by buyer to 
supplier; a loss g c v= − for each unit of inventory 
remaining at the end of each period; and finally, a 

shortage penalty h  associated with the failure to meet 
demand. The loss g  and shortage penalty are charged 
at the end of each period. The optimal ordering policy 
is to minimize the total cost over the duration of the 
process because the excess demands are backlogged 
and it is subsequently filled by a delivery. 

We assumed that an online player didn’t know 
probability distribution in real situations, but that he 
known exactly the lower bound and upper bound of 
future demand [ , ]m M , let /M mφ = . The player 
designs an online ordering strategy in the light of 
information about demand that he knows exactly, and 
obtains the competitive ratio of online strategy that is 
riskless. Let ( )AC I be the cost of the online ordering 
strategy A  on input I where I is an instance of the 
problem ∑ . Let ( )OPTC I  be the cost of the optimal 
offline ordering strategy. Then the competitive ratio of 

a strategy A  on a problem ∑  is
( )

sup
( )

A
A

OPT

C I
r

C I
= . 

The less Ar is, the better the performance of A is, the 

optimal competitive ratio for a problem is * inf AA
r r= , 

which is riskless.  
In the classical online algorithm and competitive 

analysis, the online player overlooks absolutely 
information about future demand, which has been 
criticized as being too conservative because of 
ignoring valuable information. In most cases, the 
managers don’t seek to minimize risk, but to manage it. 
They would like to accept a risk level in order to 
potential reward. Al-Binali(1999) define the risk of an 
online strategy A to be */Ar r , where Ar is the 

competitive ratio of A and *r is the optimal 
competitive ratio. From the manager’s viewpoint, this 
measure of is the maximum opportunity cost that 
online strategy A may incur over the optimal online 
strategy [12]. If t is the risk tolerance of the manager 
(where 1t ≥  and higher value of t  denote a higher 
risk tolerance), then denote by { }*|t AI A r tr= ≤  the 
set of all strategy that respect the managers risk 
tolerance.  

Within risk tolerance t , the online player forecast 
the future demand of period i [ , ]iD f F∈ , 

let
' /F fφ =  ( [ , ] [ , ]f F m M∈ ). We define Ar

∧

 
to be the competitive ratio of A restricted to cases 

when the forecast is correct: ( )sup
( )

A
A

OPT

C I
C I

r
∧

= , the 

optimal restricted ratio is * inf Ar r
∧ ∧

= . The reward of 

optimal risk strategy A  is * */AR r r
∧

= , which is a 



improvement over the optimal riskless strategy.  The 
negative outcome of competitive ratio doesn’t exceed 
the risk tolerance t  if the forecast is not correct.  

2.2. Model  
Considering a single product dynamic inventory 
problem, the demand in period i is 

i
D  ( 1, 2,i n= ⋅⋅⋅ ), 

the manager employs base stock policy. Obviously, 
the manager always let S Di i= if he knows the future 
demand in advance. We can get the optimal cost for 
offline problem: 

1
( )

n

OPT i
i

C I c D
=

= ∑                           (1)    

For an online risk manager, he can forecast the future 
demand of period i [ , ]iD f F∈  within risk tolerance t , 
but can not know exact value. The manager designs 
online ordering strategy, let 'S be the order up to level. 
We have the cost of online strategy within risk 
tolerance t : 

'

' '

' '

1 11
( ) ( ) ( )

i i

n n

i iS
i i
D S D S

n

i
hcC I D D S g S Di
= =
> <

=
+= − + −∑ ∑ ∑

               (2) 

3. Forecast & competitive analysis  
In this section, we first design online risk strategy in 
the base of forecasting demand, and the competitive 
analysis show that this strategy is optimal online 
ordering strategy when forecast is correct. In addition, 
we gain the upper bound and of range of forecasting 
demand that doesn’t exceed the manager’s acceptable 
risk tolerance level. 
Theorem 1 Within a certain range of future 
demand [ , ]m M , let /M mφ = , forecasting future 

demand of period i [ , ]iD f F∈ , let ' /F fφ =  
( [ , ] [ , ]f F m M∈ ) and designing online ordering 
strategy in the base of forecasting, let order up to level 
be 

' ( )h g fF
S

hf gF

+
=

+
; The competitive ratio is 

'

'

1
1

( )

( )

hg

c h g

φ

φ

−
+

+
 if forecast is correct, this strategy is the 

optimal online strategy within forecast; the reward is 

'

'

1 1
[1 ] /[1 ]

( ) ( )

( ) ( )

hg hg

c h g c h g

φ φ

φ φ

− −
+ +

+ +
. 

⑴the competitive ratio of strategy 

' ( )h g fF
S

hf gF

+
=

+
 is

'

'

1
1

( )

( )

hg

c h g

φ

φ

−
+

+
, which is the 

optimal online ordering strategy. 
Proof. For minimization problem, the offline 

adversary make the competitive ratio of online 
strategy designed by the manager as great as possible 
by definition, so he always select the most value F of 
the future demand in order to maximizing shortage 
penalty, or select the least value f to maximize the 
loss of inventory remaining. 

First, let iD F= , we have the cost of online 
strategy. 
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Similarly, let iD f= . We also have 

'

1
'

'[1 ]
( )( ) ( )

( )S OPT
hgC I C f

c h g
φ

φ
−

= +
+

         (4) 

For the offline adversary, the most value F and 
the least value f of demand are the best approach to 
make the competitive ratio as great as possible, that is, 
there are no other online strategies that can improve 
competitive ratio. The online ordering strategy 'S  is 
the optimal and competitive ratio 

'

'

1
'

'1
( ) ( )sup

( )( )
S

S
OPT

C I hgr
c h gC I

φ
φ
−

+= ≤
+

              (5) 

The proof is completed. 
The equation of competitive ratio show that the 

less 'φ is， the less the competitive ratio is. Namely, 
the higher the risk preference is, the better the 
performance of online strategy is if forecast is correct.  

⑵ The reward is 1 1
'

'[1 ] /[1 ]
( ) ( )

( ) ( )
hg hg

c h g c h g
φ φ

φ φ
− −

+ +
+ +

 

Proof. Recalling the proof of ⑴, then the manager 
design an online ordering strategy in the deterministic 
demand range [ , ]m M ， /M mφ = , let order up to 
level be 



* ( )h g mMS
hm gM
+

=
+

, the competitive ratio of the 

strategy is 1
1

( )
( )
hg

c h g
φ

φ
−

+
+

, this strategy is optimal online 

strategy. From the definition of reward, it can be easily 
derived that  

 
'

1 1
'

'[1 ] /[1 ]
( ) ( )

( ) ( )S

hg hgR
c h g c h g

φ φ
φ φ

− −
= + +

+ +
 

Theorem 2 For the forecast of [ , ]D f Fi ∈ , the risk of 

strategy 'S  doesn’t exceed tolerance level t  if the 

range 'φ  and the upper bound F satisfy the following 
relationship  

( )( ) '( )
(( )( ) ( ))

( )( )
(( ) ( )( ))

h h g h g F h g
c h h g t hg cg ch hg M

g h g h g F
hg cg ch hg t c g h g m

φ φ
φ φ φ

φ
φ φ φ

+ +
≥ +

+ + − + + −
+ +

≥
+ + − − − +

Proof Within the forecast of [ , ]D f Fi ∈ , and 
designing online ordering strategy, let order up to level 
be 

' ( )h g fFS
hf gF
+

=
+

. 

If the forecast is incorrect, offline adversary 
select the most value M or the least value m of 
demand second to make the competitive ratio of risk 
strategy as great as possible.  

In the light of the definition ' *S S
r tr≤ , the set of 

online strategy that respect the managers risk tolerance 
level t . We have the following relationship about the 
competitive ratio of strategy 'S if forecast is not 
correct. 

1
'

1
( ) ( )( )

( )
cm g S m hgt

cm c h g
φ

φ
−

+
+ −

≤
+

           (6) 

1
'

1
( ) ( )( )

( )
cM h M S hgt

cM c h g
φ

φ
−

+
+ −

≤
+

          (7) 

 

Table 1:Forecast, competitive ratio and reward. 
 

Let ' ( )h g fFS
hf gF
+

=
+

 replace to (6), we have  

1
'
)

'
)

1
( )( ( ) ( )

( )(
( )m c g h g g h g F hg

t
c h gcm h g

φ φ

φφ

−
+

− + + +

++
≤  , then, 

( )( )'( )
(( ) ( )( ))

g h g h g F
h g

hg cg ch hg t c g h g m

φ
φ

φ φ φ

+ +
+ ≥

+ + − − − +
     (8) 

Similarly, Let ' ( )h g fF
S

hf gF

+
=

+
 replace to (7), we also 

have 

 
1

'
)

'
)

1
( )( ( ) ( )

( )(
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t
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φ φ
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( )( )'( )
(( )( ) ( ))

h h g h g F
h g
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φ
φ

φ φ φ

+ +
+ ≤

+ + − + + −
    (9) 

Therefore, the proof of theorem 2 can be derived from 
(8) and (9).  

The theorem 1 and theorem 2 show that the 
manager can deal effectually with uncertain problems 
when he can not know probability distribution of the 
problem under non-stationary setting by using online 
algorithm with risk-reward, which make the manager 
not only utilizing valuable information and experience 
but also controlling risk within his tolerance level. 

4. Numerical analysis  
In this section, we consider one numerical example in 
order to assess the merits of using online algorithm 
with risk-reward under non-stationary demand.  

To estimate the benefit of online algorithm with 
risk-reward, we first assume that the future demand be 
in the range which is enough great and is riskless, then 
the manager forecast the range of future demand 
within his risk tolerance level and design online risk 
strategy.  

Consider a perishable commodity with purchasing 
cost of $ 3.0, a salvage value of $ 2.0, and a penalty 
cost of $ 1.0 for per unit. Assume a riskless demand 
range [100, 1000] in the future. In the context of our 
model we have  

3, 1, 1, 1000, 100, 10c g h M m φ= = = = = =   
The optimal deterministic competitive ratio 
is * 1.27r =  from theorem 1.  

Table 1 describe the forecast of the upper bound F  
and range 'φ within different risk tolerance level t , the 

optimal competitive ratio 'S
r under forecasting is 

correct, and the reward . 
 

 

F=750 
t *r  'φ  'S

r  *r / 'S
r  

1.01 1.27 [7.1，9.4] 1.185 1.07 
1.02 1.27 [6.9，13.2] 1.179 1.08 
1.03 1.27 [6.7，21.3] 1.173 1.083 
1.04 1.27 [6.6，50.6] 1.170 1.085 



In numerical experiment we exam forecast range 
and competitive ratio within different risk tolerance 
level when the manager forecast that the upper 
bound F  is 750. The observation that can be made 
from Table 1 is that the higher the risk preference is, 
the smaller the range forecasted is, the better the 
performance of online strategy is if forecast is correct. 

5. Conclusions 
The future demand is influenced by more and more 
factors and become extremely uncertain because of the 
development of technology furious competition.   
Under non-stationary setting, the managers can almost 
not describe suitable probability distribution; in 
addition, classical online algorithm is too conservative. 
In this paper the manager employ online algorithm 
with risk-reward to deal with ordering problem in 
supply chain, which make effectually use of valuable 
information within acceptable risk tolerance level. 
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