
Using XCS as a Prediction Engine in Data
Compression

Mohsen Sharifi Amir Aavani Shahab Tasharrofi
Computer Engineering Department, Iran University of Science & Technology

Abstract
XCS has been used in several fields as a prediction
engine before; its population based nature enables
XCS to generate sets of properly pruned classification
rules. Further, unlike other population based
algorithms, it learns using rewards. These properties
encouraged us to use it as a predictor engine for
lossless data compression. In the compression context,
XCS can be used to find the hidden relations in files of
the same type. So, we used it as a preprocessor before
an entropy encoder, to remove the existing correlations
between file’s bits or symbols. Removing correlations
causes entropy encoders to achieve higher rates of
compression. The results support this conclusion.

Keywords: Data Compression, Learning Classifier
System, Entropy

1. Introduction
Data compression is a branch of information theory in
which the goal is to represent data in a file, stream,
and etc using as little as possible bits. In general, data
compression consists of taking a stream of symbols
and transforming them into codes. If the compression
is effective, the resulting stream of codes will be
smaller than the original symbols. The decision to
output a certain code for a certain symbol or set of
symbols is based on a model. The model is simply a
collection of data and rules used to process input
symbols and determine which code(s) to output [1].

The concept of entropy was first introduced by
Shannon in his paper “A Mathematical Theory of
Communication” published in 1948. Shannon proved
that the entropy rate of a data source means the
average number of bits (codes) per symbol needed to
encode it [2]. Entropy effectively bounds the
performance of the best lossless compression possible,
which can be realized in theory by using the typical set
[13] or in practice using Huffman, Lempel-Ziv, or
arithmetic coding [1]. The entropy is closely related
with Markov Model of the source. The more
complicated the model, the higher the entropy.

If one reformulates the data compression into a
prediction problem, then to achieve a good
compression rate, one needs a prediction engine which,
given the current context, guesses the next few
symbols of the source as accurately as possible.
Classifiers have been used as predictors in several
fields such as financial forecasting [5] and opponent
modeling [14]. One can use a classifier as a tool to
partition data into two classes, namely 0 and 1. The
main problem with using classifiers in compression is
that there are a huge number of configurations which
should be mapped to one of the classes, 0 or 1 [7]. To
fulfill the performance measure, the classifiers should
meet the need of having a high probability of correct
classification.

We have used a special form of classifiers, the
XCS classifiers, to predict the input stream. XCS has
not been widely in use as a prediction engine before.
However, the possibility of such a usage is discussed
in [15]. The most important feature of XCS is that it
generates a rule-based system as a result of training
phase. This feature makes XCS a very effective
method of making prediction engines as rule-based
systems are one of the most widely used frameworks
to develop predicting systems [16], [17]. Furthermore,
XCS’ population based nature provides a competitive
environment which, by itself, results in generating sets
of properly pruned classification rules [6]. Further,
unlike other population based algorithms, which need
an explicit fitness function to operate, XCS learns
using rewards. This gives XCS a unique advantage,
compared to the other population based algorithms, of
being able to learn interactively. These properties
encouraged us to use XCS as a predictor engine for
lossless data compression. It is noteworthy that there is
a distinction between when one is using 'classifier' to
refer to a whole system (like Neural Network
Classifiers) and when using it to refer to a rule in a
classifier system (like XCS). In the context of XCS,
when referring to a classifier, one usually has a single
rule (instead of the whole rule-based system) in mind.

In what follows, section 2 discusses the definition
and usage of “Predictor Functions”. It also presents
how predictors could be applied to the field of data
compression. Section 3 gives a brief description of

XCS classifier systems. Section 4 discusses the
architecture which includes XCS as its core. It also
describes the logic behind how XCS works. Section 5
focuses on implementation details which we
considered while applying XCS to the field of data
compression. These details include how to choose
every single parameter of XCS algorithm. Section 6
contains some algorithms to increase the overall
functionality and some future works to be pursued.
Section 7 discusses train set and test set and the results
achieved by applying the method on them.

2. Predictor functions
In a predictive encoder, we are interested in predicting
the next k input symbols kyyyy ,,, 21 L= , given a
vector x = x1, x2,..., xM using a predictor function,
where each xi is 1 if a particular feature is present in
the input history, and 0 otherwise [7].

In the field of compression, there are many ways
to use this schema. One of which is to consider a file
as a stream of symbols, and then, by fixing M, the size
of input vector, one can use the last M symbols of the
stream as the input to the predictor function. It is
logical, then, to select k to be 1, i.e. the predictor
function should only deal with guessing the next
symbol of the stream. As the underlying model of
sources is usually thought to be a finite Markov Model,
this method can fully be justified.

Selecting the symbols to be bits of input stream is
a custom choice [7]. Based on the same assumption
that we did in the previous paragraph, i.e. the
underlying models of sources are Markov Models, it
seems that the adjacent bits have higher correlation
compared to the other sets of bits. For example, when
one sees the “tha” in an English text, they expect the
character “t” after it. In some contexts, however, there
may be cases in which the adjacent bits are not so
correlated. And, thus, no finite Markov Model could
be a good model of the source for these contexts. We
will discuss it later in section 7.

This is a common choice among predictive
encoders to have distinct symbols, usually a bit with
distinct values of 0 and 1, and to put one of them when
it has guessed the next source’s symbol right and the
other followed by the right symbol if not. In the case
of predicting only one bit per time, however, saving
the correct bit in case of incorrect prediction is not
necessary as there is only one way around. It is easy to
check that the original symbol (here the input bit) is,
then, equal to the result of applying XOR operator on
the output bit and the result of the predictor.

This approach to predict one bit of input stream
per time results in a stream which has the same length

as the input stream. Although this may seem odd for
the purpose of compression, having a more precise
look at the output stream demonstrates that having a
good predictor will result in a low error rate which is,
by the method described, equal to a lot of zeros on the
output stream, which, usually, decreases the entropy
(and achieves a higher compression rate). As a result,
existing entropy coders could compress the resulted
stream better than the main stream. Like what has been
shown in [8].

It is proven that Bayesian Classifiers guarantee
the minimum expected error [9]. But we already know
that implementing a Bayesian Classifier needs a huge
amount of input resources (to have a good estimation
of probabilities of symbols) and is impractical for
large attribute vectors. So, we need a predictor that is
able to handle large attribute vectors and is fast
enough to be comparable with existing methods.
Mahoney uses Neural Networks to predict the input
stream [10]. We have used XCS as a predictor
function that is described in section 4.

3. An overview of XCS
XCS, developed by Wilson [12], is a learning
classifier system [6]. It uses reinforcement learning
along with genetic algorithms in order to search for the
best rule-based. XCS is designed for both single-step
and multiple-step tasks, but the discussion here is
restricted to only the version that works for single-step
tasks in which the system, by receiving an input data,
makes a decision and selects an action. System does
not receive any input before applying the selected
action to the environment and, later, receiving the
reward of the action back from the environment [6].

XCS is a collection of classifiers [6]. Each
classifier has a pair of <CONDITION, ACTION> and
a set of parameters. Conditions can be thought as a
string of {0, 1, #}, where # matches any character and
so called “don’t care” symbol, but 0 and 1 match only
0 and 1, respectively. Each classifier has three
principal parameters:

1) Prediction, an estimate for the reward that will
be received from environment, if the
classifier’s action will be selected on an input
that matches condition.

2) Prediction error, an estimate of the difference
between reward and Prediction.

After receiving an input, XCS generates a set of
classifiers called “match set” whose conditions match
the input data. Size of “match set” must be bigger than
a specified threshold (θ Bmna B). If the number of matched
classifiers is less than θ Bmna, then XCS tries to generate
some classifiers whose conditions match the input.

In next step, an action should be chosen. XCS
does not prescribe any particular action-selection
method but usually the following method is used. XCS
chooses action according to classifiers prediction and
classifiers fitness with probability of 1- PBexp B and
chooses a random action between those which are
available in “match set” with probability of PBexpB. In
this way, XCS is allowed to explore the environment.

After choosing an action, “action set” must be
generated from the “match set”. “Action set” is a
subset of “match set”, in which all classifiers’ actions
are the same as selected action. “Action set” is the
most important part of XCS, because all updates occur
on it.

The agent sends the selected action to the
environment and receives the reward (or penalty) from
environment. Reward is a measure of how good the
selected action had been.

After receiving reward, agent updates the
prediction, prediction error and fitness parameters of
the classifiers which are in “action set”. Update step
involves updating the prediction parameter based on
its last value and the reward, and then, error estimate
and fitness parameters.

XCS runs a genetic algorithm on the member of
“action set” time by time. Two classifiers based on
their fitness are chosen and a two-point crossover will
be applied on them and two new children (classifiers)
will be created. These new classifiers will be inserted
into the population.

A method for deleting some classifiers exists. If
the number of classifiers exceeds a threshold (N), XCS
uses it to remove some classifiers. Each classifier has a
probability to delete. This probability is calculated
according to classifier fitness and the action set size
estimate.

4. Using XCS as a predictor
function

As it is shown in Fig.1, every bit in stream is fed into
both SR box and DCF box. Then, the content of SR
box is fed to XCS and the result of XCS box also is
sent to DCF box. The result of DCF box is the
correspondent output of input bit. The process is the
same in both encoding and decoding procedures.

4.1. SR Box
SR box is an M-bit shift register that is initially filled
with zeros. It consists of M previous bits of input and
is used to represent the attribute vector X(x1, x2… xM).

4.2. XCS Box
The input of the XCS box, as it is shown in Fig.1, is
the vector X from SR box and its output is the action 0
or 1 that will be sent to DCF box.

This box does not completely simulate XCS. It
only generates “match set” and selects an action based
on it (with P Bexp PB

=
P0.0). This box also does not contain

any update procedures of XCS. It uses predefined
classifiers to generate the “match set”. If “match set”

Fig. 1: Schema of predictor function.

is empty, an action that has the maximum occurrence
will be taken. Fig.2 shows the contents of XCS box.

The classifiers of XCS box are trained offline on
large sets of input. Compression with predefined
classifiers is called to be offline, but we have also
designed (not implemented yet) an online version that
will be described briefly in section 6.

Although a general purpose data compressor
ideally treats all input files in the same manner, but the
poor results of training a set of classifiers for all the
sample files together led us to train different sets of
classifiers for different file types such as “text files”,
“Pascal sources”, “HTML files”, “monochrome
bitmaps”, and “color bitmaps”.

It should be noted that although training of XCS
box is done off-line, compression actually occurs at
run time and is desired to be as fast as possible.

Fig. 2: Schema of XCS box.

4.2.1. Benefits of XCS in compression context

XCS keeps the classifiers which have greater impact
due to their higher support and confidence. So, the
classifiers with low support (classifiers which are
rarely used) or low confidence (classifiers which are
not reliable) will be removed. This leads to better
expected error rates compared to other classification
systems.

The parameter N of XCS enables us to restrict its
size. So, it will not use huge memory resources like
Bayesian classifiers. It also provides control over
generality of classification.

XCS could be applied to various file types and the
resultant set of classifiers could be used without any
further considerations. Its results are expected to be
extremely better than general classifiers as it is
described in section 7.

Finding an action based on classifiers is a really
fast process and is linear respect to N and M. It
processes about 14000 characters per second.

The “don’t care” symbol in classifiers’ conditions
and the ability of merging two classifiers with the
same action and nearly similar conditions causes the
resultant classifiers’ conditions to focus only on
important features which have high correlation with
the action. This process is called “subsumption
procedure”.

4.2.2. How does XCS Reduce the Entropy?
If the classifiers predict the input almost accurately,
the resultant file will contain lots of zeros, and so the
probability of zeros and patterns that have zeros will
be increased. So, based on Shannon’s formula, the
entropy of the message will be decreased [2]. XCS, in
this context, is used as a learner that learns the input
language and predicts the next symbols. For example,
in case of Pascal sources on which we trained the XCS,
it was clear (by checking the generated rules) that it
has learnt keywords of Pascal language and some
common Pascal patterns like the new line code after
“begin” keyword or “for i:=" token.

About the “colored bitmaps”, we trained the
system in two different ways. First, we trained the

XCS on the whole file. Resulting set of classifiers
learned relation of colors (small regions have the same
color). Second, we separated each bitmap to 24 files
(each containing the correspondent bits of colors). And
we also trained 24 sets of classifiers for each group of
files (one for the files containing most significant bits,
and so on). The resultant sets of classifiers learned the
properties of each bit. For example, the set of
classifiers for the most significant bit learned how to
predict the changes in luminosity of pictures.

4.3. Difference calculator function
(DCF)
The DCF box simply implements an XOR on the bit
from input stream and the predicted bit of XCS box. It
assures us that the whole process is reversible and the
resulting stream contains more zeros if the predictor
acts accurately. It also makes the encoder and decoder
processes like each other.

4.4. Entropy encoder (EE)
EE box could contain an implementation of any
compression algorithm like LZW, Huffman,
Arithmetic coding, etc. Our implementation takes
advantage of a 1-bit arithmetic coder [1].

5. Implementation
As Fig.1 suggests, the main focus of the system should
be on the XCS box. Our implementation of XCS takes
the following parameters into account:

• PB#B: This parameter represents the probability
of “don’t care” symbol and is highly related to the
nature of the file type which we are working on. For
example, PB#B could have higher values in text files
(0.2 in our implementation) than that of
monochrome bitmaps (0.12 in our implementation).
So, we need some experts that could define the best
value of PB#B. Though we have defined it by “trial
and error”, we could use some control mechanisms
that has been described in section 6. As it is
described in more detail there, we have always
underestimated the PB#B value. This value was set to
0.15 for “Pascal sources” and “HTML files” and
0.1 for both implementations of “color bitmaps”.
• N: This parameter represents the size of
population (i.e. the maximum number of classifiers
in XCS). This parameter has high correlation with
entropy of the file type which we are working on.
For classifying a file type with high information
content comparing with the one with lower
information content, more classifiers are needed.

We have set this parameter (in our implementation)
to 5000 for “text files”, 2000 for “html files” and
“Pascal sources” and 7000 for “monochrome
bitmaps” and 15000 for both implementations of
“color bitmaps”. This parameter was set based on
the fact that for example, “Pascal sources” have less
information content than “text files” because they
have some structural grammar.
• M: This parameter represents the number of
features used for prediction. Unlike other AI
problems in which the number of features (the
number of inputs of the system) is known, this
problem (compression using prediction) has
unbounded number of features. In fact, as it could
be inferred from what Shannon says, if you could
use more bits for prediction, the order with which
you are compressing the file will increase and so,
you could compress the file better. We have set this
parameter (in our implementation) to 64 (i.e. last 8
characters) for “text files”, 48 for “Pascal sources”,
40 for “html files”, 48 for that implementation of
“color bitmaps” which does not separate the colors
and 24 for both “monochrome bitmaps” and the
other implementation of “color bitmaps”.
• PBexpB: This parameter represents the
probability with which we explore the environment.
Like every other reinforcement learning algorithm,
this parameter is initialized with high values (0.7 in
our implementation) and will be decreased through
the train process by a coefficient (0.95 in our
implementation that is applied every 50 steps). This
value would not go under a lower bound (0.05 in
our implementation).

There were also other parameters that either we
did not take into account or we did not change the
values from what is stated in [6].

A more general subsumption procedure has also
been implemented. This procedure combines the
classifiers with same action which their condition’s
Hamming distance is one and they have near fitness.
The new subsumption procedure will be applied every
IBsub Bstep (where IBsub Bis a new parameter that we have
introduced).

The reward in our implementation is calculated by
simply comparing the predicted value by XCS and the
correspondence input bit, i.e. if the XCS has predicted
the bit correctly, it would receive a positive reward
and otherwise a zero reward. There could also be
another reward assignment procedure which is
described in section 6.

6. Some notes

XCS could be used in an adaptive compression too.
Adaptive compression means that the model is
generated on the fly [1]. In our context, this means that
the classifiers of XCS should be generated in an online
manner. Adaptive compressors benefit from the
identical model update algorithms and initial models.
XCS algorithm in our context plays the role of both
“model initializer” and “model updater”. The “model
initializer” should be an XCS with or without
predefined classifiers. The “model updater” should be
a common XCS algorithm in which the random
choices are handled so that they are not random
anymore (to make the process deterministic which is a
necessity of adaptive algorithms).

As mentioned before, a mechanism for automatic
control over value of PB#B exists that we will describe it
here. It has previously been reported [11] that XCS
can work with large PB#B provided only that some minor
adjustments are made. It is also claimed that larger PB#B
values are better for generalization and they carry the
promise of more compact populations. However, our
experiments with PB#B near one (a big probability of
“don’t care” symbol occurrence) resulted in random or
greedy behavior which means that the system was not
able to generalize the concepts and over fits on the last
pieces of data given to it.

 Conversely, setting PB#B to a small value (near 0.0)
causes delayed convergence if population size is
allowed to be large enough. But the process would not
converge if population size were not allowed to be
large enough.

Our mechanism for automatic control over PB#B is
based on the fact that the best value of PB#B is near to
average number of “don’t care” symbols in successful
classifiers (classifiers with high fitness). This fact
leads us to start with a small PB# Band update it, time by
time, to the weighted average over successful
classifiers.

 The mechanism used for reward calculation was
a single step reward mechanism, but we already know
that XCS learning algorithm supports delayed reward
mechanisms (the reward belongs to all actions done till
now). For example, here, the reward could be given
every eight steps based on the decrease of entropy
between input and output streams.

7. Result
“Table 1” shows the experimental results of applying
the system on the train set (the set of files that is used
for XCS train process). Test and train sets are
collected randomly out of more than 200 mega bytes
of files on computers in the university laboratory. The
random selection of files is unbiased, that is the train

set is not assumed to contain any special information.
Thus the trained set of classifiers could be assumed to
be general.

“Table 2” shows the experimental results of
applying the system on the test set. The first column of
both tables shows the file type which is used. The last
two rows on each table are labeled with 1st and 2nd
methods of “color bitmaps” where the “1st method”
indicates the method in which colors are separated to
24 bits, while the “2nd method” indicates the method
in which we have encountered the bitmaps as ordinary
binary files.

File Type Train set size

Comp. rate
by

Arithmetic
coding (bpc)

Text Files 1.1 MB out of
4.7 MB 2.401

Pascal
Sources

4.3 MB out of
14.5 MB 2.234

HTML
Sources

6.9 MB out of
45.9 MB 1.982

Monochrom
e Bitmaps

3.1 MB out of
13.2 MB 2.784

Color
Bitmaps (1P

st
P

method)

22 MB out of
145 MB 3.310

Color
Bitmaps (2P

nd
P

method)

22 MB out of
145 MB 3.781

Table 1: Results on train set. The total of 5000
classifiers are used in all methods.

System is equipped with a 20-bit adaptive

arithmetic coder in place of “EE box”. The results in
the third column are the bpc (bit per character) of
output.

“Table 3” shows the result of comparing proposed
method against some well known compressors such as
“compress”, “gzip” and “pkzip”. “Average
Compression Rate” is a weighted average over the
compression rate of each file in test set.

File Type Test set size
Comp. rate by

Arithmetic coding
(bpc)

Text Files 0.6 MB out
of 4.7 MB 2.731

Pascal
Sources

1.4 MB out of
14.5 MB 2.390

HTML
Sources

5.0 MB out of
45.9 MB 2.192

Monochro
me

Bitmaps

0.9 MB out of
13.2 MB 2.995

Colored
Bitmaps

(1P

st
P

method)

10 MB out of
145 MB 3.453

Colored
Bitmaps

(2P

nd
P

method)

10 MB out of
145 MB 3.896

Table. 2: Results on test set (based on XCS classifiers with
5000 classification rules).

Compressor Average Compression Rate
compress 3.610

gzip 3.280
pkzip 3.807
XCS

Compressor
3.302

Table. 3: Comparison with other compressor.

References
[1] M. Nelson, The Data Compression Book, T M&T,

New York, NY, 1995.
[2] C.E. Shannon, A Mathematical Theory of

Communication. Bell Syst. Tech. J., 27, 1948.
[3] TA.P. Berg, W.B. Mikhael, Survey of techniques

for lossless compression of signals. Midwest
Symposium on Circuits and Systems, 2: 943-946,
1994.

[4] T. R. A. Stine, Model Selection Using
Information Theory and MDL Principle.
Sociologist Methods & Research, 33(2): 230-260,
2004.

[5] C. Lee Giles, Noisy Time Series Prediction using
a Recurrent Neural Network and Grammatical
Inference. Machine Learning, 44: 161-183, 2001.

[6] M. V. Butz, S. W. Wilson, An Algorithmic
Description of XCS. IlliGAL Report No 2000017,
2000.

[7] T.M. V. Mahoney, Text Compression as a Test
for Artificial Intelligence. AAAI, 970T, 1999.

[8] Blue Book, Lossless Data Compression. CCSDS
121.0-B-1, 1997.

[9] T.P. Domingos, M. Pazzani, TOn the Optimality
of the Simple Bayesian Classifier under Zero-
One LossT. Machine Learning, 29: 103-130,
1997.

[10] TM. V. Mahoney, Fast Text Compression with
Neural Networks. Proceedings of the American
Association of Artificial Intelligence, FLAIRS
conference, pp. 230-234, 2000.

[11] M. V. Butz, D. E. Goldberg, K. Tharakunnel,
Analysis and improvement of fitness exploitation

in XCS: Bounding models, tournament selection,
and bilateral accuracy. Evolutionary
Computation, 11: 239-277 , 2003.

[12] S. Wilson, Classifier fitness based on accuracy.
Evolutionary Computation, 3: 149-175, 1995.

[13] T. M. Cover, J.A. Thomas, Elements of
information theory, Wiley, New York, 1991.

[14] R. D. Bulos, et. al., A data mining approach in
opponent modeling. proceedings of Australian
Conference on Artificial Intelligence, Springer,
pp. 993-996, 2005.

[15] S. W. Wilson, State of XCS Classifier System
Research. Lecture Notes in Computer Science,
1813: 63-81, 2000.

[16] S. M. Weiss, C. A. Kulikowski, Computer
systems that learn: classification and prediction
methods from statistics, neural nets, machine
learning, and expert systems, Morgan Kaufmann
Publishers Inc., 1991.

[17] T. M. Mitchell, Machine Learning, McGraw-Hill
Higher Education, 1997.

