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Abstract 
XCS has been used in several fields as a prediction 
engine before; its population based nature enables 
XCS to generate sets of properly pruned classification 
rules. Further, unlike other population based 
algorithms, it learns using rewards. These properties 
encouraged us to use it as a predictor engine for 
lossless data compression. In the compression context, 
XCS can be used to find the hidden relations in files of 
the same type. So, we used it as a preprocessor before 
an entropy encoder, to remove the existing correlations 
between file’s bits or symbols. Removing correlations 
causes entropy encoders to achieve higher rates of 
compression. The results support this conclusion. 
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1. Introduction 
Data compression is a branch of information theory in 
which the goal is to represent data in a file, stream, 
and etc using as little as possible bits. In general, data 
compression consists of taking a stream of symbols 
and transforming them into codes. If the compression 
is effective, the resulting stream of codes will be 
smaller than the original symbols. The decision to 
output a certain code for a certain symbol or set of 
symbols is based on a model. The model is simply a 
collection of data and rules used to process input 
symbols and determine which code(s) to output [1]. 

The concept of entropy was first introduced by 
Shannon in his paper “A Mathematical Theory of 
Communication” published in 1948. Shannon proved 
that the entropy rate of a data source means the 
average number of bits (codes) per symbol needed to 
encode it [2]. Entropy effectively bounds the 
performance of the best lossless compression possible, 
which can be realized in theory by using the typical set 
[13] or in practice using Huffman, Lempel-Ziv, or 
arithmetic coding [1]. The entropy is closely related 
with Markov Model of the source. The more 
complicated the model, the higher the entropy. 

If one reformulates the data compression into a 
prediction problem, then to achieve a good 
compression rate, one needs a prediction engine which, 
given the current context, guesses the next few 
symbols of the source as accurately as possible. 
Classifiers have been used as predictors in several 
fields such as financial forecasting [5] and opponent 
modeling [14]. One can use a classifier as a tool to 
partition data into two classes, namely 0 and 1. The 
main problem with using classifiers in compression is 
that there are a huge number of configurations which 
should be mapped to one of the classes, 0 or 1 [7]. To 
fulfill the performance measure, the classifiers should 
meet the need of having a high probability of correct 
classification.  

We have used a special form of classifiers, the 
XCS classifiers, to predict the input stream. XCS has 
not been widely in use as a prediction engine before. 
However, the possibility of such a usage is discussed 
in [15]. The most important feature of XCS is that it 
generates a rule-based system as a result of training 
phase. This feature makes XCS a very effective 
method of making prediction engines as rule-based 
systems are one of the most widely used frameworks 
to develop predicting systems [16], [17]. Furthermore, 
XCS’ population based nature provides a competitive 
environment which, by itself, results in generating sets 
of properly pruned classification rules [6]. Further, 
unlike other population based algorithms, which need 
an explicit fitness function to operate, XCS learns 
using rewards. This gives XCS a unique advantage, 
compared to the other population based algorithms, of 
being able to learn interactively. These properties 
encouraged us to use XCS as a predictor engine for 
lossless data compression. It is noteworthy that there is 
a distinction between when one is using 'classifier' to 
refer to a whole system (like Neural Network 
Classifiers) and when using it to refer to a rule in a 
classifier system (like XCS). In the context of XCS, 
when referring to a classifier, one usually has a single 
rule (instead of the whole rule-based system) in mind. 

In what follows, section 2 discusses the definition 
and usage of “Predictor Functions”. It also presents 
how predictors could be applied to the field of data 
compression. Section 3 gives a brief description of 



XCS classifier systems. Section 4 discusses the 
architecture which includes XCS as its core. It also 
describes the logic behind how XCS works. Section 5 
focuses on implementation details which we 
considered while applying XCS to the field of data 
compression. These details include how to choose 
every single parameter of XCS algorithm. Section 6 
contains some algorithms to increase the overall 
functionality and some future works to be pursued. 
Section 7 discusses train set and test set and the results 
achieved by applying the method on them. 

2. Predictor functions 
In a predictive encoder, we are interested in predicting 
the next k input symbols kyyyy ,,, 21 L= , given a 
vector x = x1, x2,..., xM using a predictor function, 
where each xi is 1 if a particular feature is present in 
the input history, and 0 otherwise [7]. 

In the field of compression, there are many ways 
to use this schema. One of which is to consider a file 
as a stream of symbols, and then, by fixing M, the size 
of input vector, one can use the last M symbols of the 
stream as the input to the predictor function. It is 
logical, then, to select k to be 1, i.e. the predictor 
function should only deal with guessing the next 
symbol of the stream. As the underlying model of 
sources is usually thought to be a finite Markov Model, 
this method can fully be justified. 

Selecting the symbols to be bits of input stream is 
a custom choice [7]. Based on the same assumption 
that we did in the previous paragraph, i.e. the 
underlying models of sources are Markov Models, it 
seems that the adjacent bits have higher correlation 
compared to the other sets of bits. For example, when 
one sees the “tha” in an English text, they expect the 
character “t” after it. In some contexts, however, there 
may be cases in which the adjacent bits are not so 
correlated. And, thus, no finite Markov Model could 
be a good model of the source for these contexts. We 
will discuss it later in section 7. 

This is a common choice among predictive 
encoders to have distinct symbols, usually a bit with 
distinct values of 0 and 1, and to put one of them when 
it has guessed the next source’s symbol right and the 
other followed by the right symbol if not. In the case 
of predicting only one bit per time, however, saving 
the correct bit in case of incorrect prediction is not 
necessary as there is only one way around. It is easy to 
check that the original symbol (here the input bit) is, 
then, equal to the result of applying XOR operator on 
the output bit and the result of the predictor. 

This approach to predict one bit of input stream 
per time results in a stream which has the same length 

as the input stream. Although this may seem odd for 
the purpose of compression, having a more precise 
look at the output stream demonstrates that having a 
good predictor will result in a low error rate which is, 
by the method described, equal to a lot of zeros on the 
output stream, which, usually, decreases the entropy 
(and achieves a higher compression rate). As a result, 
existing entropy coders could compress the resulted 
stream better than the main stream. Like what has been 
shown in [8]. 

It is proven that Bayesian Classifiers guarantee 
the minimum expected error [9]. But we already know 
that implementing a Bayesian Classifier needs a huge 
amount of input resources (to have a good estimation 
of probabilities of symbols) and is impractical for 
large attribute vectors. So, we need a predictor that is 
able to handle large attribute vectors and is fast 
enough to be comparable with existing methods. 
Mahoney uses Neural Networks to predict the input 
stream [10]. We have used XCS as a predictor 
function that is described in section 4. 

3. An overview of XCS 
XCS, developed by Wilson [12], is a learning 
classifier system [6]. It uses reinforcement learning 
along with genetic algorithms in order to search for the 
best rule-based. XCS is designed for both single-step 
and multiple-step tasks, but the discussion here is 
restricted to only the version that works for single-step 
tasks in which the system, by receiving an input data, 
makes a decision and selects an action. System does 
not receive any input before applying the selected 
action to the environment and, later, receiving the 
reward of the action back from the environment [6]. 

XCS is a collection of classifiers [6]. Each 
classifier has a pair of <CONDITION, ACTION> and 
a set of parameters. Conditions can be thought as a 
string of {0, 1, #}, where # matches any character and 
so called “don’t care” symbol, but 0 and 1 match only 
0 and 1, respectively. Each classifier has three 
principal parameters:  

1) Prediction, an estimate for the reward that will 
be received from environment, if the 
classifier’s action will be selected on an input 
that matches condition.  

2) Prediction error, an estimate of the difference 
between reward and Prediction. 

After receiving an input, XCS generates a set of 
classifiers called “match set” whose conditions match 
the input data. Size of “match set” must be bigger than 
a specified threshold (θ Bmna B). If the number of matched 
classifiers is less than θ Bmna, then XCS tries to generate 
some classifiers whose conditions match the input. 



In next step, an action should be chosen. XCS 
does not prescribe any particular action-selection 
method but usually the following method is used. XCS 
chooses action according to classifiers prediction and 
classifiers fitness with probability of 1- PBexp B and 
chooses a random action between those which are 
available in “match set” with probability of PBexpB. In 
this way, XCS is allowed to explore the environment. 

After choosing an action, “action set” must be 
generated from the “match set”. “Action set” is a 
subset of “match set”, in which all classifiers’ actions 
are the same as selected action. “Action set” is the 
most important part of XCS, because all updates occur 
on it. 

The agent sends the selected action to the 
environment and receives the reward (or penalty) from 
environment. Reward is a measure of how good the 
selected action had been. 

After receiving reward, agent updates the 
prediction, prediction error and fitness parameters of 
the classifiers which are in “action set”.  Update step 
involves updating the prediction parameter based on 
its last value and the reward, and then, error estimate 
and fitness parameters. 

XCS runs a genetic algorithm on the member of 
“action set” time by time. Two classifiers based on 
their fitness are chosen and a two-point crossover will 
be applied on them and two new children (classifiers) 
will be created. These new classifiers will be inserted 
into the population. 

A method for deleting some classifiers exists. If 
the number of classifiers exceeds a threshold (N), XCS 
uses it to remove some classifiers. Each classifier has a 
probability to delete. This probability is calculated 
according to classifier fitness and the action set size 
estimate. 

4. Using XCS as a predictor 
function 

As it is shown in Fig.1, every bit in stream is fed into 
both SR box and DCF box. Then, the content of SR 
box is fed to XCS and the result of XCS box also is 
sent to DCF box. The result of DCF box is the 
correspondent output of input bit. The process is the 
same in both encoding and decoding procedures.  

4.1. SR Box 
SR box is an M-bit shift register that is initially filled 
with zeros. It consists of M previous bits of input and 
is used to represent the attribute vector X(x1, x2… xM). 

4.2. XCS Box 
The input of the XCS box, as it is shown in Fig.1, is 
the vector X from SR box and its output is the action 0 
or 1 that will be sent to DCF box. 

This box does not completely simulate XCS. It 
only generates “match set” and selects an action based 
on it (with P Bexp PB

= 
P0.0). This box also does not contain 

any update procedures of XCS. It uses predefined 
classifiers to generate the “match set”. If “match set”  

 

Fig. 1: Schema of predictor function. 
 
is empty, an action that has the maximum occurrence 
will be taken. Fig.2 shows the contents of XCS box. 

The classifiers of XCS box are trained offline on 
large sets of input. Compression with predefined 
classifiers is called to be offline, but we have also 
designed (not implemented yet) an online version that 
will be described briefly in section 6.  

Although a general purpose data compressor 
ideally treats all input files in the same manner, but the 
poor results of training a set of classifiers for all the 
sample files together led us to train different sets of 
classifiers for different file types such as “text files”, 
“Pascal sources”, “HTML files”, “monochrome 
bitmaps”, and “color bitmaps”. 

It should be noted that although training of XCS 
box is done off-line, compression actually occurs at 
run time and is desired to be as fast as possible. 
 



 
Fig. 2: Schema of XCS box. 

4.2.1. Benefits of XCS in compression context 

XCS keeps the classifiers which have greater impact 
due to their higher support and confidence. So, the 
classifiers with low support (classifiers which are 
rarely used) or low confidence (classifiers which are 
not reliable) will be removed. This leads to better 
expected error rates compared to other classification 
systems. 

The parameter N of XCS enables us to restrict its 
size. So, it will not use huge memory resources like 
Bayesian classifiers. It also provides control over 
generality of classification. 

XCS could be applied to various file types and the 
resultant set of classifiers could be used without any 
further considerations. Its results are expected to be 
extremely better than general classifiers as it is 
described in section 7. 

Finding an action based on classifiers is a really 
fast process and is linear respect to N and M. It 
processes about 14000 characters per second. 

The “don’t care” symbol in classifiers’ conditions 
and the ability of merging two classifiers with the 
same action and nearly similar conditions causes the 
resultant classifiers’ conditions to focus only on 
important features which have high correlation with 
the action. This process is called “subsumption 
procedure”. 

4.2.2. How does XCS Reduce the Entropy? 
If the classifiers predict the input almost accurately, 
the resultant file will contain lots of zeros, and so the 
probability of zeros and patterns that have zeros will 
be increased. So, based on Shannon’s formula, the 
entropy of the message will be decreased [2]. XCS, in 
this context, is used as a learner that learns the input 
language and predicts the next symbols. For example, 
in case of Pascal sources on which we trained the XCS, 
it was clear (by checking the generated rules) that it 
has learnt keywords of Pascal language and some 
common Pascal patterns like the new line code after 
“begin” keyword or “for i:=" token. 

About the “colored bitmaps”, we trained the 
system in two different ways. First, we trained the 

XCS on the whole file. Resulting set of classifiers 
learned relation of colors (small regions have the same 
color). Second, we separated each bitmap to 24 files 
(each containing the correspondent bits of colors). And 
we also trained 24 sets of classifiers for each group of 
files (one for the files containing most significant bits, 
and so on). The resultant sets of classifiers learned the 
properties of each bit. For example, the set of 
classifiers for the most significant bit learned how to 
predict the changes in luminosity of pictures. 

4.3. Difference calculator function 
(DCF) 
The DCF box simply implements an XOR on the bit 
from input stream and the predicted bit of XCS box. It 
assures us that the whole process is reversible and the 
resulting stream contains more zeros if the predictor 
acts accurately. It also makes the encoder and decoder 
processes like each other. 

4.4. Entropy encoder (EE) 
EE box could contain an implementation of any 
compression algorithm like LZW, Huffman, 
Arithmetic coding, etc. Our implementation takes 
advantage of a 1-bit arithmetic coder [1]. 

5. Implementation 
As Fig.1 suggests, the main focus of the system should 
be on the XCS box. Our implementation of XCS takes 
the following parameters into account: 

• PB#B: This parameter represents the probability 
of “don’t care” symbol and is highly related to the 
nature of the file type which we are working on. For 
example, PB#B could have higher values in text files 
(0.2 in our implementation) than that of 
monochrome bitmaps (0.12 in our implementation). 
So, we need some experts that could define the best 
value of PB#B. Though we have defined it by “trial 
and error”, we could use some control mechanisms 
that has been described in section 6. As it is 
described in more detail there, we have always 
underestimated the PB#B value. This value was set to 
0.15 for “Pascal sources” and “HTML files” and 
0.1 for both implementations of “color bitmaps”. 
• N: This parameter represents the size of 
population (i.e. the maximum number of classifiers 
in XCS). This parameter has high correlation with 
entropy of the file type which we are working on. 
For classifying a file type with high information 
content comparing with the one with lower 
information content, more classifiers are needed. 



We have set this parameter (in our implementation) 
to 5000 for “text files”, 2000 for “html files” and 
“Pascal sources” and 7000 for “monochrome 
bitmaps” and 15000 for both implementations of 
“color bitmaps”. This parameter was set based on 
the fact that for example, “Pascal sources” have less 
information content than “text files” because they 
have some structural grammar. 
• M: This parameter represents the number of 
features used for prediction. Unlike other AI 
problems in which the number of features (the 
number of inputs of the system) is known, this 
problem (compression using prediction) has 
unbounded number of features. In fact, as it could 
be inferred from what Shannon says, if you could 
use more bits for prediction, the order with which 
you are compressing the file will increase and so, 
you could compress the file better. We have set this 
parameter (in our implementation) to 64 (i.e. last 8 
characters) for “text files”, 48 for “Pascal sources”, 
40 for “html files”, 48 for that implementation of 
“color bitmaps” which does not separate the colors 
and 24 for both “monochrome bitmaps” and the 
other implementation of  “color bitmaps”. 
• PBexpB: This parameter represents the 
probability with which we explore the environment. 
Like every other reinforcement learning algorithm, 
this parameter is initialized with high values (0.7 in 
our implementation) and will be decreased through 
the train process by a coefficient (0.95 in our 
implementation that is applied every 50 steps). This 
value would not go under a lower bound (0.05 in 
our implementation). 

There were also other parameters that either we 
did not take into account or we did not change the 
values from what is stated in [6]. 

A more general subsumption procedure has also 
been implemented. This procedure combines the 
classifiers with same action which their condition’s 
Hamming distance is one and they have near fitness. 
The new subsumption procedure will be applied every 
IBsub Bstep (where IBsub Bis a new parameter that we have 
introduced). 

The reward in our implementation is calculated by 
simply comparing the predicted value by XCS and the 
correspondence input bit, i.e. if the XCS has predicted 
the bit correctly, it would receive a positive reward 
and otherwise a zero reward. There could also be 
another reward assignment procedure which is 
described in section 6. 

6.  Some notes 

XCS could be used in an adaptive compression too. 
Adaptive compression means that the model is 
generated on the fly [1]. In our context, this means that 
the classifiers of XCS should be generated in an online 
manner. Adaptive compressors benefit from the 
identical model update algorithms and initial models. 
XCS algorithm in our context plays the role of both 
“model initializer” and “model updater”.  The “model 
initializer” should be an XCS with or without 
predefined classifiers. The “model updater” should be 
a common XCS algorithm in which the random 
choices are handled so that they are not random 
anymore (to make the process deterministic which is a 
necessity of adaptive algorithms). 

As mentioned before, a mechanism for automatic 
control over value of PB#B exists that we will describe it 
here. It has previously been reported [11] that XCS 
can work with large PB#B provided only that some minor 
adjustments are made. It is also claimed that larger PB#B 
values are better for generalization and they carry the 
promise of more compact populations. However, our 
experiments with PB#B near one (a big probability of 
“don’t care” symbol occurrence) resulted in random or 
greedy behavior which means that the system was not 
able to generalize the concepts and over fits on the last 
pieces of data given to it. 

 Conversely, setting PB#B to a small value (near 0.0) 
causes delayed convergence if population size is 
allowed to be large enough. But the process would not 
converge if population size were not allowed to be 
large enough.  

Our mechanism for automatic control over PB#B is 
based on the fact that the best value of PB#B is near to 
average number of “don’t care” symbols in successful 
classifiers (classifiers with high fitness). This fact 
leads us to start with a small PB# Band update it, time by 
time, to the weighted average over successful 
classifiers.  

 The mechanism used for reward calculation was 
a single step reward mechanism, but we already know 
that XCS learning algorithm supports delayed reward 
mechanisms (the reward belongs to all actions done till 
now). For example, here, the reward could be given 
every eight steps based on the decrease of entropy 
between input and output streams. 

7. Result 
“Table 1” shows the experimental results of applying 
the system on the train set (the set of files that is used 
for XCS train process). Test and train sets are 
collected randomly out of more than 200 mega bytes 
of files on computers in the university laboratory. The 
random selection of files is unbiased, that is the train 



set is not assumed to contain any special information. 
Thus the trained set of classifiers could be assumed to 
be general. 

“Table 2” shows the experimental results of 
applying the system on the test set. The first column of 
both tables shows the file type which is used. The last 
two rows on each table are labeled with 1st and 2nd 
methods of “color bitmaps” where the “1st method” 
indicates the method in which colors are separated to 
24 bits, while the “2nd method” indicates the method 
in which we have encountered the bitmaps as ordinary 
binary files. 

File Type Train set size 

Comp. rate 
by 

Arithmetic 
coding (bpc)

Text Files 1.1 MB out of 
4.7 MB 2.401 

Pascal 
Sources 

4.3 MB out of 
14.5 MB 2.234 

HTML 
Sources 

6.9 MB out of 
45.9 MB 1.982 

Monochrom
e Bitmaps 

3.1 MB out of 
13.2 MB 2.784 

Color 
Bitmaps (1P

st
P  

method) 

22 MB out of 
145 MB 3.310 

Color 
Bitmaps (2P

nd
P  

method) 

22 MB out of 
145 MB 3.781 

Table 1: Results on train set. The total of 5000 
classifiers are used in all methods. 

 
System is equipped with a 20-bit adaptive 

arithmetic coder in place of “EE box”. The results in 
the third column are the bpc (bit per character) of 
output. 

“Table 3” shows the result of comparing proposed 
method against some well known compressors such as 
“compress”, “gzip” and “pkzip”. “Average 
Compression Rate” is a weighted average over the 
compression rate of each file in test set. 
 

File Type Test set size 
Comp. rate by 

Arithmetic coding 
(bpc) 

Text Files  0.6 MB out 
of 4.7  MB 2.731 

Pascal 
Sources 

1.4 MB out of 
14.5 MB 2.390 

HTML 
Sources 

5.0 MB out of 
45.9 MB 2.192 

Monochro
me 

Bitmaps 

0.9 MB out of 
13.2 MB 2.995 

Colored 
Bitmaps 

(1P

st
P  

method) 

10 MB out of 
145 MB 3.453 

Colored 
Bitmaps 

(2P

nd
P  

method) 

10 MB out of 
145 MB 3.896 

Table. 2: Results on test set (based on XCS classifiers with 
5000 classification rules). 

 
 

Compressor Average Compression Rate 
compress 3.610 

gzip 3.280 
pkzip 3.807 
XCS 

Compressor
3.302 

Table. 3: Comparison with other compressor. 
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