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Abstract

As a filter model, rough set-based methods are one
of effective attribute reduction(also called feature
selection) that preserve the meaning of the fea-
tures. In rough set theory, researchers mainly focus
on extension of the classical rough set model(also
called Pawlak model for short) and development
of efficient attribute reduction algorithms. How-
ever, very little work has been done for aiming on
the evaluation of the quality of attribute reduc-
tion, except that employing the cardinality of the
given attribute subset P and so-called approxima-
tion quality of P or other equivalent criteria in-
duced by Pawlak model. Although this discrimina-
tion strategy is simple and effective in most cases, it
is very difficulty to guarantee the selected attribute
reduction(s) from lots of attribute reductions are
the best or Top n, especially for the case contain-
ing many attribute reductions with same cardinal-
ity and approximation quality. Therefore, in this
paper, we incorporate margin criteria into the pro-
posed evaluation mechanism for guaranteeing the
effectiveness of the selected attribute subsets, since
margin, originally designed for binary classification
problem using support vector machine, can actu-
ally determine the generalization ability. Also, an
improved discernibility function-based algorithm is
proposed. To further test the effectiveness of the
proposed method, the algorithm of this paper is
experimented using UCI benchmark datasets. Pre-
liminary experimental results show that the at-
tribute reductions with larger margin have better
or comparable performance than those with rela-
tively small margin for all reducts with same cardi-
nality. Thus, our newly developed method can, in
most cases, get more effective attribute subsets.

Keywords: Rough set, Attribute reduction, Mar-
gin

1. Introduction

Attribute reduction(also called feature selection )
has been viewed as one of the most key prob-
lems in the field of the machine learning[1-3]. It
is defined as a process of selecting relevant at-
tributes(features) out of the larger set of candidate
attributes. The relevant attributes are defined as
attribute subset that has the same classification ca-
pability with the entire attributes. Since attribute
reduction reduces the dimensionality of the data, it
enables the learning algorithms to operate more ef-
fectively and rapidly. Moreover, in some cases, clas-
sification performance can be improved. In other
instances, the required classifier is more compact
and can be easily interpreted. Hence, the studies
for attribute reduction are of great value.

Generally,supervised attribute reduction meth-
ods can be categorized into two classes: the filter
model and the wrapper model[1,2]. In the wrap-
per model the attribute reduction methods tries
to directly optimize the performance of a specific
predictor(post-analysis algorithm). Along this, the
predictor generalization performance (e.g. by cross
validation) needs to be estimated for the selected
attribute subset in each step. So, high computa-
tional cost is its main disadvantage.

In contrast, in the filter model the reduction is
done as a data preprocessing, without attempting
to optimize the performance of any specific predic-
tor directly. Usually, the quality of an attribute
subset is evaluated by employing the so-called fit-
ness function, the higher the fitness value the more
effective the attribute subset for two attribute sub-
sets with the same cardinality.

As a filter model, rough set approach is one
of effective attribute reduction methods that can
preserve the meaning of the attributes[3]-[5], it has
been widely applied in many fields of machine learn-
ing, such as pattern recognition[6], web mining [7]
and other application fields [8]. In rough set the-
ory, both extension of the proposed models and



development of more efficient attribute reduction
algorithms are two main research issues. Some
novel extended models [9]-[11] and many rough set-
based attribute reduction algorithms[12]-[16] have
been introduced to date. Generally, the rough set-
based attribute reduction methods can roughly be
divided into the following categories: discernibil-
ity matrix-based methods[12]-[14],positive region-
based methods[15], heuristic strategy-based meth-
ods[8] and other evolutionary methods [16]. It is
well known that the main objective of rough set-
based attribute reduction methods is to provide
those attribute subsets with the best or top n qual-
ity for post-analysis algorithms. To our best knowl-
edge, very little work has been done for evaluat-
ing the quality of attribute subsets obtained by
the proposed attribute reduction algorithms, ex-
cept that employing the cardinality of the given
attribute subset P and so-called approximation
quality of P or other equivalent criteria induced
by Pawlak model. However, in real applications,
by this classical evaluating strategy, it is very dif-
ficulty to guarantee the selected attribute reduc-
tion(s) from lots of attribute reductions are the
best or Top n, especially for the case that many
attribute reductions have same cardinality and ap-
proximation quality. Therefore, selecting the more
effective attribute subsets from lots of attribute re-
ductions remains very important and also is our
motivation of this study.

In essence, the so-called ”the more smaller
the cardinality of an attribute reduction obtained
by the training set, the more better its qual-
ity” means the attribute reduction with small car-
dinality should have a low generalization error.
But this strategy lacks a theoretical foundation,
hence it need to be compensated by other strat-
egy. From a theoretical point of view, margin,
originally designed for binary classification prob-
lems in the Support Vector Machine(SVM)[17], is
a measure of the generalization performance of a
learning machine[18]-[19], it is the so-called ”the
more larger the margin of the classification, the
more lower the generalization error of the learning
machine”. Therefore, combining maximum margin
criteria and the classical rough set-based valuation
mechanism has the following advantages: provid-
ing an effective measure for ranking of the attribute
subsets; enhancing the performance of the conven-
tional rough set model and other filter models.

In this study, the margin of a object with re-
spect to a given attribute subset is extended and re-
defined, and then we present an improved attribute
reduction algorithm by embedding a maximum

margin criteria in classical discernibility function-
based attribute reduction framework. Further, the
quality of selected attribute subsets are tested on
standard UCI benchmark datasets by employing
both k-nearest neighbor (K-NN)[20]-[21] classifier
and well known fisher discriminant analysis with
kernels(KFDA) classifier[22].

The rest of this paper is organized as follows: In
Section 2, some basic concepts on rough set theory
are briefly introduced; In Section 3, the proposed
margin is extended and redefined; A new discerni-
bility function-based attribute reduction algorithm
is developed in Section 4; Some experimental com-
parisons are presented in Section 5; Finally, Section
6 gives our conclusions and several issues for future
work.

2. Preliminaries

This section introduces some essential definitions
from rough set theory that are used for attribute re-
duction, more details and formal definitions about
the rough set theory can be found in [3][8][14].

Definition 1. (decision table[14]-[15])In rough set
theory, a data set can be formally described us-
ing a decision table or an information system. A
decision table is denoted as DT =< U,Q, V, f >,
where U = {x1, x2, ..., xn} is a non-empty finite set
of objects or cases, called universe, Q is a non-
empty finite set of attributes, Q = C

⋃
D, where

C is the condition attributes and D is the decision
attributes, C

⋂
D = {}. In this paper, D = {d} is

a singleton set, where d is the class attribute that
denotes classes of objects. V =

⋃
a∈Q Va , and Va

is the domain of the attribute a. f : U × Q → V
is a total function such that f(xi, a) ∈ Va for every
a. Throughout this paper, {} denotes the empty
set, and card(X) or |X| denotes the function that
returns the cardinality of the argument set X.

With any P ⊆ Q there is an associated equiv-
alence relation IND(P ):

IND(P ) = {(x, y) ∈ U2|∀a ∈ P, a(x) = a(y)}.
The partition of U , generated by IND(P ) is de-
noted as U/IND(P ). If (x, y) ∈ IND(P ), then x
and y are indiscernible by attributes from P . The
equivalence classes of the P -indiscernibility relation
are denoted[x]P .

Definition 2. (lower-approximation, positive re-
gion and approximation quality[14]-[15]) Given a
decision information table S =< U,Q, V, f >,
for any subset X ⊆ U and indiscernibility rela-
tion IND(B), the B lower-approximation of X



is defined as: B (X) = {x|[x]B ⊆ X}.For P ⊆
Q,B ⊆ Q,the P positive region of B is defined
as :Posp(B) =

⋃
X∈U/IND(B) P (X) ; the P-

approximation quality of B is defined as :

γP (B) = |PosP (B)|/|U |, namely

γP (B) = |
⋃

X∈U/IND(B)

P (X)|/|U |.

Definition 3. (attribute reduction[4]-[6][22])

Given a decision table S =< U,C
⋃

D, V, f >. An
attribute reduction R is defined as a subset of the
conditional attributes C such that γR(D) = γC(D)
and γS(D) 6= γC(D) holds for any S ⊂ R. For
short, an attribute reduction and the set of at-
tribute reduction is denoted by reduct and reducts,
respectively.

Definition 4. (discernibility matrix,discernibility
function[3][8]) Given a decision table
DT =< U,C

⋃
D, V, f >, a discernibility ma-

trix DM is defined as an n× n matrix of DT with
the (i, j) th entry mi,j given by:

mi,j = {a ∈ C : f(xi, a) 6= f(xj , a)} for
f(xi, D) 6= f(xj , D) and {} otherwise; (1)

A discernibility function fDM , induced
by formula (1), is a Boolean function of m boolean
variables a∗1, a

∗
2, ..., a

∗
m (corresponding to the at-

tributes a1, a2, ..., am) defined as below:

fDM (a∗1, a
∗
2, ..., a

∗
m) =

∧{∨ m∗
i,j |1 ≤ j ≤ i ≤

card(U),mi,j 6= {}; where m∗
i,j = {a∗|a ∈ mi,j}.(2)

An attribute subset R of C is an at-
tribute reduction iff R

⋂
mi,j 6= {} holds for

each mi,j ∈ DM(mi,j 6= {}), and for every S ⊂ R,
∃mi,j ∈ DM(mi,j 6= {})s.t.S ⋂

mi,j = {}. More-
over, by solving (2), all reducts of a decision table
can be determined. In addition, any two reducts
R, S, the quality of reducts is generally evaluated
as follows: if card(R) is less than card(S) , then
R is better than S; if card(R) is equal to card(S)
, then the quality of R is same as that of S. As
mentioned in Section 1, this evaluation strategy
lacks a theoretical foundation. So, employing
the improved margin criteria as evaluation of the
quality of reducts will be discussed in Section 3.

3. Principle for evaluating the
quality of attribute subsets
by margin criteria

Except for developing the efficient attribute reduc-
tion algorithms, how to seek an efficient criteria for
evaluating the quality of the given attribute sub-
sets is also an important task, since the objective
of attribute reduction is to provide those effective
attribute subsets for predictors or post-analysis al-
gorithms. So, seeking more effective criteria, for
evaluating the quality of given attribute subsets, is
our motivation of this study.

As mentioned in Section 1, conventional mea-
sure criteria for the quality of the given reducts
lacks a theoretical foundation. Especially, it is dif-
ficulty to determine which one is more better for the
following two cases: card(A) is equal to card(B);
card(A) < card(B) but card(A) is near to card(B),
where both A and B are reducts. Therefore, to
enhance the discrimination capability of the pro-
posed evaluation strategy, the following margin-
based evaluation function is incorporated into the
existing evaluation criteria.

As pointed out in [2,19], margins play an im-
portant role in modern machine learning research.
They measure the classifier confidence when mak-
ing its decision. Generally, margins are divided into
two categories: sample-margin, hypothesis-margin,
where sample-margin measures the distance be-
tween object(instance) and the decision boundary
induced by the classifiers such as Support Vector
Machines[17], while hypothesis-margin is the dis-
tance between the hypothesis and the closest hy-
pothesis that assigns alternative decision attribute
value to the given object. In this paper, we em-
ploy hypothesis-margin for improving the evalua-
tion ability of rough set method, since rough set
model is mainly a data preprocessing tool. So, for
continuous attributes case, we introduce the follow-
ing definitions of margins of an object and all ob-
jects.

Definition 5.(margin of x(A) (x ∈ U,A ⊆ C))
Given a decision table DT =< U,C

⋃
D, V, f >,

let x ∈ Uand A ⊆ C, the margin of x with respect
to A is

MU (x,A) = 1
2 (‖x(A) − nearmiss(x(A))‖ −

‖x(A)− nearhit(x(A))‖) (3)

where x(A) is a project of x on A, i.e., x(A) =
(f(x, a1), f(x, a2), ..., f(x, as)), A = {a1, a2, ..., as};
nearhit(x(A)) and nearmiss(x(A)) denote the



nearest point to x(A) in U with the same
and different decision attribute value(label for
short), i.e., ∀y ∈ U , y(A) 6= nearhit(x(A)) and
x(A) 6= y(A),f(x(A), D) = f(nearhit(x(A)), D)
and f(x(A), D) = f(y(A), D),‖ x(A) −
nearhit(x(A)) ‖≤‖ x(A)-y(A) ‖; ∀y ∈ U ,x(A) 6=
y(A),y(A) 6= nearmiss(x(A)),f(x(A), D) 6=
f(nearmiss(x(A)), D) and f(x(A), D) 6=
f(y(A), D),‖ x(A) − nearmiss(x(A)) ‖≤‖
x(A) − y(A) ‖ . In this paper, we use the
L1-norm. Of course, in real applications, other
metric strategies could be obtained by metric
learning.

Definition 6. (margin of U(A), A ⊆ C) Given a
decision table DT =< U,C

⋃
D, V, f >, let A ⊆ C,

the margin of U with respect to A (for short, the
margin of A) is

EU (A) =
∑

x∈U MU−{x}(x,A) (4)

Intuitively,EU (A) > 0, i.e., in most cases,
the distance between a given object and the near-
est neighbor with the same label is less than that
between the object and the nearest neighbor with
the different label. By maximum margin criteria,
the more larger the margin of an attribute subset,
the more powerful its generalization ability. So, in
this paper, we use margin of U as a compensated
evaluation function, i.e., the margin-based evalua-
tion function is embedded into classical evaluation
criteria in rough set theory. Concretely, the hybrid
evaluation criteria of the quality of the reducts is
as follows.

1) if card(A) ≤ card(B) and EU (A) ≥ EU (B),
then the quality of A is better than that of B;

2) if card(A) ≤ card(B), card(B)−card(A)
card(A) < ε and

EU (B) >> EU (A) , where ε > 0 is a pre-set
threshold, then the quality of B is better than
that of A. where both A and B are two given
reducts.

In this paper, we mainly discuss the decision
table in which all condition attributes are con-
tinuous attributes. Of course, Definition 5 also
can be easily extended for the case of discrete
attribute-values, that is, formula (3) is replaced
using the following formula (5) .

MU (x,A) = 1
2 [dissim(x(A) − simmiss(x(A))) −

dissim(x(A), simhit(x(A)))] (5)

where dissim(x,y) denotes the dissimilarity

between objects x and y; simhit(x(A)) and sim-
miss(x(A)) denote the most similar point to x(A)
in U with the same and different decision attribute
value(label for short). Other notations are similar
to definition 5.

Obviously, in most cases, the degree of the
dissimilarity between a given discrete object and
the most similar object with the same label should
be less than that between the object and the most
similar object with the different label. However,
how to measure the degree of dissimilarity of two
discrete objects is a very important but full of
challenge. Here we provide a simple strategy to
measure the similarity and dissimilarity between
any two discrete objects with respect to an at-
tribute subset A as the following formulas (6) and
(7). Developing a more advanced and effective
measure method is ongoing, more details will be
reported in future work.

sim(x(A), y(A)) = card({a∈A|f(x,a)=f(y,a)})
card(A) (6)

dissim(x(A), y(A)) = 1− sim(x(A), y(A)) (7)

Based on formulas (6),(7),(5)and(4),we
can also obtain the margin of U(all objects) for a
discrete decision table.

Following by above analysis, we will introduce
a rough set-based attribute reduction algorithm
with margin strategy in Section 4.

4. Incorporating margin into
rough set-based model

In this section, to illustrate how to incorporate
the margin criteria in the existing rough set-based
attribute reduction methods, here employing the
classical discernibility matrix-based models as
representative, the following Algorithm 1 is the
novel discernibility function-based attribute reduc-
tion algorithm with margin criteria. Similarly, the
margin criteria could be easily embedded in other
rough set-based attribute reduction models such
as positive region-based and evolutionary models,
etc.

Algorithm 1. IMAR//Incorporating mar-
gin criteria in an attribute reduction algorithm

Input: let DT =< U,C
⋃

D, V, f > be a decision
table, ε(ε > 0)is a pre-set threshold;

Output: Ranking of some selected reducts.



Step 1. Min-max normalization for each
continuous-valued attribute, generate a new
decision table DT1 =< U1, C

⋃
D, V, f >;

Step 2. discretize the data set U , get a new deci-
sion DT2 =< U2, C

⋃
D, V, f >;

Step 3.

for(i=1 to card(U2)-1, j=i+1 to card(U2))

If f(xi, d) 6= f(xj , d) then mi,j ={a ∈ C :
f(xi, a) 6= f(xj , a)};

else mi,j = {};
Step 4. construct a discernibility function fDM by

(2);

Step 5. obtain the reducts by solving the discerni-
bility function fDM ;

Step 6. filter the reducts;

Step 7. evaluate the quality of every reduct in the
reducts using margin strategy for DT1;

Step 8. return reducts;

In Algorithm 1, all continuous-valued at-
tributes are normalized first. Here, the so-called
Min-max normalization method is employed
, which maps a value ν of a to ν′ in the
ranges[new mina, new maxa] by computing

ν′ = ν−mina

maxa−mina
(new maxa − new mina) +

new mina (8)

here, let new mina and new maxa be 0 and 1, re-
spectively.

Then, all continuous-valued attributes are dis-
cretized into intervals of discrete categorical values
[5,8]. Next, based on formulas (1) and (2), a dis-
cernibility matrix and the corresponding discerni-
bility function, induced by it, are generated respec-
tively. Further, by solving the discernibility func-
tion fDM , all reducts are obtained.

For the case having lots of reducts, by Step 6,
most of those reducts with larger cardinality, rela-
tive to the attribute reductions with small cardinal-
ity, are filtered. Following this strategy, only those
short and effective reducts are reserved. Finally, us-
ing the maximum margin criteria, these reducts are
ranked, hence those more effective and relatively in-
dependent reducts could be obtained.

Especially, by setting a reasonable value for the
adjustable parameter ε , some relatively long but
having larger margin reducts will acquire higher

score. Hence the new criteria can effectively over-
come the disadvantages of the classical evaluation
method, which is also a compensation but not in-
stead of it. Moreover, according to the number of
reducts and the cardinality of reducts, ε is easily
determined via user requirement.

In contrast with the existing algorithm, this
algorithm incorporates margin criteria in the
discernibility function-based attribute reduction
model, hence which can ensure that those more ef-
fective reducts can be chosen.

5. Experimanets

To test the effectiveness of algorithm developed
in this paper, we performed the experiments
on three publicly available datasets from UCI
database (These datasets can be downloaded at
http://www.ics.uci.edu).

A brief description of the UCI datasets is
given at first: (1) Glass Identification(Glass): 214
objects, 9-conditional attributes(9F), 1-decision
attribute (1D), 2-classes(2C) ( the 1th attribute
is removed in original dataset, class 1: float data;
class 2: non float data); For short, denoted as
(214,9F,1D,2C); (2) Iris23: (100,4F,1D,2C) (iris23
consists of those objects contained in second and
third classes); (3) Wisconsin Prognostic Breast
Cancer(WPBC):(194,32F,1D,2C) ( 4 objects with
missing values are deleted and ID attribute is re-
moved from original WPBC). In our experiments,
we randomly choose 50% objects as training data,
and use remaining 50% objects as testing data.

K-NN KFDA
datasets reduct margin Accuracy Accuracy

K=1 K=3 K=5
{a3, a4, a6} 8.914239 48% 55% 57% 88.89%
{a3, a5, a7} 8.575893 52% 52% 56% 87.04%

Glass {a2, a3, a4, a7} 9.405252 36% 47% 48% 87.04%
{a3, a4, a6, a7} 9.83123847% 48% 48% 86.11%

{a1, a2, a4, a5, a6} 8.866564 24% 39% 43% 88.89%
{a1, a2, a4, a6, a7} 8.760097 20% 20% 26% 84.26%

{a1, a4} 3.885714 56% 36% 32% 100.0%
Iris23 {a3, a4} 4.627778 72% 58% 40% 100.0%

{a4, a27} 4.824138 18% 10% 05% 77.32%
{a1, a10} 4.298874 12% 06% 08% 76.29%
{a2, a14} 3.585075 12% 11% 08% 77.32%

WPBC {a5, a16, a19} 5.191718 08% 10% 17% 77.32%
{a1, a15, a29} 4.200866 20% 08% 06% 76.29%
{a14, a15, a29} 4.233819 27% 12% 15% 76.29%

Table 1. Experimental results.
Notes: The cells with boldface represent those attribute

subsets with larger margin or with high accuracy, and

corresponding margins and accuracies, respectively.

For simplicity of discussion, in our experi-
ments, the conditional attributes are named as
a1, a2, ..., am in order, and let ε=0.1. Why the con-



trolled parameter ε is set a very small value? our
main intention of this study attempts to evaluate
those reducts with same cardinality. In addition,
we use RBF kernel as the kernel function of the
KFDA algorithm(KFDA for short).

By Steps1-5 of Algorithm 1, the number of
the reducts obtained by Glass, Iris23 and WPBC
are 6,2 and 87, respectively. All reducts generated
by the former two datasets are used for evaluat-
ing their quality, while 6 reducts are chosen from
87 reducts obtained by the latter dataset, where 3
reducts are selected from 38 reducts with the car-
dinality 2, and another 3 reducts are chosen from
the remains with the cardinality 3.

The experimental results are shown in Table 1.
From Table 1, for those reducts with same cardi-
nality, we can find that the more larger the margin,
the more better the generalization ability in most
cases, it is consistent with ”margin theory”, hence
the effectiveness of the new evaluation function is
further verified. Since the three datasets of this
paper are non linearly separable, it is nature that
the performance and stability of K-NN classifier
are inferior to those of KFDA classifier. Further,
we find that the KFDA classifier has more better
generalization ability for those reducts with small
cardinality and large margin for all three datasets,
while the K-NN also has more better generalization
ability for those reducts with small cardinality and
large margin for the former two datasets, this is
also consistent with the new criteria of this paper.
For the dataset WPBC, the performance of K-NN
classifier has a litter fluctuation when the value of
K is increased gradually, this may be related to its
non linear separability, but it has not influence for
obtaining those more effective reducts.

In summary, here we provided results on how
to measure the margin of a dataset with respect to
an attribute subset, and how to incorporate mar-
gin criteria in the classical rough set-based algo-
rithms for evaluating the effectiveness of the ob-
tained reducts. More studies which including more
tests and some novel improving strategies are under
exploring currently.

6. Conclusions

To more effectively evaluate the quality of reducts
obtained by rough set model, in this paper, we
incorporate margin criteria in rough set-based
attribute reduction model. For simplicity, using
discernibility matrix-based attribute reduction as a
representative, a new attribute reduction algorithm
with margin criteria is introduced. By the support

of so-called ”margin theory”, the newly hybrid
evaluation function(combining margin criteria
and the classical evaluation function in rough
set theory) provides a theoretical foundation for
measuring the quality of reducts. The preliminary
experimental results show that the attribute
reductions with larger margin have better or
comparable performance than those with relatively
small margin for all reducts with same cardinality,
this is consistent with ”margin theory”. Therefore,
our newly developed method can, in most cases,
get more effective attribute subsets.

However, in this paper, we mainly discuss
the case of continuous attributes. Moreover,
the proposed margin model need to be further
improved by employing different metric criteria.

So, in the future, further studies on improv-
ing strategies of the proposed margin model for
establishing an effective margin-based evaluation
function are required. In addition, building more
effective margin-based evaluation function, that
aims at the discrete attributes, is also one of our
future work.
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