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Abstract  
This paper presents a novel simple, but efficient robot 
path planning algorithm, which plans the obstacle-
avoidance path according to map information, makes 
robots reach the target. In the paper, the actual 
environment is discretized into a topologically 
organized map consisting of targets, obstacles and free 
spaces. We quantify the road roughness, which affects 
the motion of robots to the degree of pass convenience 
with a special mathematical model, and introduced into 
the model for path planning. Targets propagate the so-
called “vector-distance” to whole workspace through 
free-space grid points in a special direction. Because the 
distance propagating in this way has direction and size, 
it is called “vector-distance”, which is constrained by 
the motion of nonholonomic mobile robot. So the path 
obtained by this algorithm is the optimal path suitable 
to the motion of nonholonomic mobile robot. This 
model is characterized by high computational efficiency, 
small storage cost and perfectly simulating the actual 
map. This algorithm can be conveniently used in 
practice. 
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1. Introduction 
The robot-path planning with obstacle avoidance is a 
fundamentally important issue in robotics. There are 
much research on robot-path planning using various 
approaches, such as the grid-based ∗A  algorithm, 
artificial potential field and fuzzy algorithm and so on 
[1-3]. However, some of those algorithms have some 
drawbacks such as computational complexity and the 
local minima. Stimulated by the dynamic properties of 
Hodgkin and Huxley’s membrane model [4] and 
shunting model [5] developed by Grossberg, Yang and 
Meng [6-9] proposed a new neural network model for 
generating the path for point/nonholonomic mobile 
robot in static/dynamic environment, which had major 
advantages in generating the safety path for robots and 
computing  path efficiently. In Yang and Meng’s model, 

the target globally attracted the robot in the entire 
workspace through neural activity outward propagating, 
while the obstacles only locally had influence on the 
robot motion. The point/nonholonomic mobile robot-
path generated by a lot of neuron was characterized by a 
shunting equation or an additive equation connected 
together, and the path was safety. However, the path 
was not shortest sometimes. A. R. Wilmas proposed 
distance propagating dynamic system [10], which had 
all advantages from Yang and Meng’s model. In this 
model, the environment is topologically organized by 
grid. The target propagate outward the distance to entire 
environment, and each grid has an associated variable 
which records the distance between this grid point to 
nearest target. Because of the distance variable only 
recording the distance of path to the target, this robot 
path is shorter than the path generated by Yang and 
Meng’s model occasionally. However, this algorithm 
cannot plan the path for the nonholonomic mobile robot. 
The robot environments of above two models were 
discretized into a lot of grid points. Each grid point was 
the target, obstacle or free space; they did not consider 
the diversity of the influence on the robot motion 
caused by the free-space face roughness. 

Inspired by Yang and Meng’s model and based on 
distance-propagating model we propose a simple robot-
path planning model, which is called vector-distance 
propagating model. There are two main differences 
between our model and Wilmas’s model. First, unlike 
the distance-propagating model in which the distance 
propagation is omni-directional, the vector-distance is 
directionally propagated through neighbour grid point 
in free-space. So the vector-distance recorded by each 
grid point is a function of both distance and direction 
subject to the nonholonomic constraint, and then the 
model can plan path for the nonholonomic mobile robot. 
Second, the vector-distance here not only records the 
length of path from target to free space grid point, but 
also records the measurement of the influence on the 
robot motion caused by the road surface roughness. 
Since the influence on the robot motion caused by the 
road surface roughness is considered, the path planed 
by our model is suitable for nonholonomic mobile robot 
stable motion, with little power and small mechanical 
wear. The numerical value of measurement of the 



influence on the robot motion caused by the road 
surface roughness is a real, positive constant number. 
This model has the same principle and mechanism as 
Wilmas’s model. This algorithm of model is 
computationally simple and efficient. The robot path is 
planed without explicitly optimizing any global cost 
function, and any local obstacle-checking procedures at 
each step. Since the motion of robots only depends on 
current position and orientation without any information 
of motion history, the cost of storage is quite small. 
When the vector-distance dynamically propagates, the 
dynamic system converges in a small number of 
iterative to a state, that is, the vector-distance recorded 
by each grid point converges to a real constant number. 
This algorithm can always plan an optimal path, by 
which the nonholonomic mobile robot can safely and 
quickly reach the target. This model is well adapted to 
actual application. 

This paper is organized as following. In section 2 
we will first introduce the kinematics model of 
nonholonomic mobile robot, and mathematical model 
of measurement of the influence on the robot motion 
caused by the road surface roughness, vector-distance 
propagating system, and robot motion model. The 
simulation studies including motion planning for maze 
environment and parallel parking are presented in 
section 3. A simple conclusion of this model is 
addressed in section 4.  

2. Modeling 
In this section, the kinematics model of nonholonomic 
mobile robot and mathematical model of the influence 
on the robot motion caused by the road surface 
roughness are briefly introduced. Finally, the vector-
distance propagating system and motion model are 
presented. 

2.1. Vehicle model 
For a mobile robot with size and shape, its 
configuration in the 2-D Cartesian workspace can be 
uniquely determined by ( θ,, yx ), spatial position of the 
center of gravity and the orientation angle.  

The so-called control variables Lv  and Rv is the 
velocity of left and left drive wheel, respectively. L  is 
the distance between two drive wheel;α  is the angle 
that robot turns over during the time interval of one step 

tΔ  (See Fig.1(a)).The kinematics’ constraint of 
nonholonomic mobile robot is described as [9], [11], 
[12] 

 
αα cossin yx && =                              (1) 

In this robot model, given the robot velocity of two 
independent drive wheels, Lv  and Rv  in very short 
interval, the following equations can be obtained 
through geometric relationship. 
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After the integration over the time interval of one 
step, based on (1), (2) the next robot position is given 
by 
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The robot velocity v  and orientation angle θ  ( vΔ ) 
depend on the two control variables. The v  and vΔ  are 
limited to maxv  and maxvΔ , respectively, i.e. max|| vv ≤  
and max|| vv Δ≤Δ . The Cartesian product of two intervals 
is given by 

{ } { }maxmax00 ,0,, vvvv ΔΔ−×−  

and gets one set with the six elements. The six elements 
represent the six next possible robot configurations of a 
given robot configuration (See Fig.1 (b)) [8] [9].     

 

Fig.1: Diagram of a nonholonomic mobile robot. (a) 
Kinematics of a mobile robot, where ( 11, yx ) is robots’ 
position at time kt , and 1θ  is orientation. ( 222 ,, θyx ) is robot 
configuration at time ttk Δ+ . (b) Six possible next robot 
configurations of a given robot configuration depends on v  
and vΔ .   
 

2.2. Model of influence on robots 
motion caused by the road 
surface roughness  

We assume that the surface of robot movement space is 
known. Divided the surface into a lot of sub-surfaces, 
whose projection on the level is a unit square. The 



subsurface becomes a unit square plane, which is 
parallel to ground level by a special mathematical 
technique. So the robot environment is discretized into 
M  grid points, labeled by an index i . 

We define iB  to be the point set of free spaces that 
are adjacent neighbor to grid point i , maxd  and mind  to 
be the minimum and maximum distances between any 
two adjacent neighbors in the grid of free space and 
target respectively and ijd  to be the length of minimum 
path joining two free spaces i  and j  through free-
space [10]. As illustrated in Fig.2, for regular unit 
square grid, the adjacent neighbor set for the grid point 
labeled zero and maxd , mind  are 

{ }8,7,6,5,4,3,2,10 =B  

203max == dd , 102min == dd . 
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Fig.2: Regular square grid and maxd , mind  
 

  
Fig.3: Model of Influence on Robots Motion caused by the 
Road Surface Roughness. 

For simplicity but without losing generality, when 
the robot R  arrives at i  position at time kt  (the 
position of the center of gravity of robot R  is grid point 
i ), the influence on the robot motion caused by the grid 
point i  surface roughness replaces the influence on the 
area which contacts with robot at time kt . We assume 
that nonholonomic mobile robot motion heading up at 
β  over grid point j . Fig.3 gives the demonstration. 

We define )(βj
hld  and )(βj

hrd  to be the absolute value of 
the difference of altitude between grid point j  and its 

right and left adjacent neighbor in the direction β . We 
obtain the value ),( βjf  by following equation 
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The influence on the robot motion caused by the 

road surface roughness should only locally affect robot-
path planning. Assign ),( βjf  to a real number )(βjI  
( ],0[)( maxdI j ∈β ) using the following equation  

)/(),()( maxdHjfI j ×= ββ                    (5) 
where H  is the maximum absolute value of the altitude 
difference between any grid point and ground level.  

Each grid point has eight different iI  
corresponding to β . The model defines the value of iI  
of target and obstacle point to be zero and D , 
respectively. The value of iI  is given by  
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where the value of D  ( max4MdD = ) is sufficiently 
large.  

2.3. Vector-distance propagating 
system 

The nonholonomic mobile robot configuration in the 2-
D Cartesian workspace can be uniquely determined by 
the spatial position ( yx, ) of the center of gravity and 
the orientation angle θ . We use eight orientations of 
robot configuration representing the robot yaw angle 
from o0  to o360 with a step of o45 . 

ORC 1 2  3 

yaw angle o5.22 -
o5.67  

o5.67 -
o5.112  

o5.112 -
o5.157  

ORC 4  5 6  

yaw angle o5.157 -
o5.202  

o5.202 -
o5.247  

o5.247 -
o5.292  

ORC 7  0   

yaw angle o5.292 -
o5.337  

o5.337  -
o5.22  

 

Table1: The orientation of robot configuration corresponding 
to robot yaw angle. 



In detailed, orientation of robot configuration 
(ORC) 0  corresponds to the robot yaw angle from 

o5.337  to o5.22 , and other knowledge given in Table1. 
A set of orientation of robot configuration: 

O ={ }7,6,5,4,3,2,1,0  
For example, robot configuration ( 3,, 11 yx ) 

represents that the spatial position of center of gravity 
of robot is ( 11, yx ), and the robot yaw angle is between 

o5.112  and o5.157 . 
Each grid point i  recording the vector-distance is 

propagated from target outward to point i  through the 
free space adjacent neighbor. Now, assume that the 
vector-distance is propagated from grid point j  to its 
adjacent neighbor grid point i . We define the direction 

iθ  of vector ij →  to be the direction of vector-
distance propagation of grid point i . The direction of 
vector-distance of grid point i , jθ

r
 is given by 

following equation 
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where Oi ∈θ , δ ( πδ ≤ ) is included angle between jθ
r

 
and iθ . 
      When the environment of robot is determined, the 
needed robot configuration in target position is 
determined; we call this configuration as target-robot 
configuration. 

The system defines the direction of the vector-
distance of target tθ

r
 to be the reverse orientation of 

target-robot configuration, and the direction of the 
vector-distance propagation of target tθ  to be D . 

As illustrated in Fig.4 (b), 7=tθ
r

, and 0=tθ . We 
assume that the direction of vector-distance of grid 
point j  is 4 ( 4=jθ

r
), and grid point j  propagates the 

vector-distance to its adjacent neighbor grid point i . 
The direction of vector-distance of grid point i  can be 
obtained by (7). Because of 3=iθ , 4=jθ

r
 and 

2/πδ < , which δ  is the included angle between jθ
r

 

and iθ , so 3=iθ
r

. Similarly, 1=kθ  and 2/πδ > , 

which δ  is the included angle between jθ
r

 and kθ , and 

then 1−=kθ
r

.  

We call the grid point i  and k  as the positive and 
negative vector-distance propagating point of grid point 
j , respectively. 

Note that the model requires 2/πδ ≠  in the 
vector-distance propagating process.  
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Fig.4: (a) Orientation of the nonholonomic mobile robot 
configuration. (b) The direction of vector-distance and its 
propagating 

We define the function )1( +nLti  at time step 1+n  
given by 
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where  

)),((min onxdL jijSjij
i
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+ ( i  is positive vector-distance 

propagating point of point j ); 

)2),((min maxdonxdL jijSjij
i

++=
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− ( i  is negative vector-

distance propagating point of point j ). 

Notes: 

 1) jθ
r

 is not perpendicular to iθ
r

,and 2/πδ < , 

which δ  is the included angle between jθ
r

 and iθ , if 
+∈ iSj  and ii BS ⊂+ .  

 2) jθ
r

 is not perpendicular to iθ
r

,and 2/πδ > , 

which δ  is the included angle between jθ
r

 and iθ , if 
−∈ iSj  and ii BS ⊂− . 

Each grid point has eight different iI  
corresponding to β . When the vector-distance along 
the direction of vector-distance propagation of grid 
point i  is propagated to grid point i , the corresponding 

iI  will work. Each grid point has an associated variable 

ix  given by 

)))()1((  ,  min(),1( oInLDonx itii ++=+           (9) 

where io θ
r

=  represents the direction of vector-distance.  

The vector-distance propagating system is 
characterized by equations (8), (9). The vector-distance 



is completely specified by a magnitude ix  and a 

direction iθ . Here jθ
r

 is not perpendicular to iθ
r

 and 
2/πδ ≠ . Since the grid point j ’s vector-distance is a 

certain value at time step n ( n  grid step), and the 
vector-distance spreading speed is one grid step in each 
time step. The grid point i  can record the variable ix  
propagated from j  at time 1+n . The value of ix  
recorded by each grid point will be [ ]Dxi ,0∈ . 

The system is initialized by setting the variables 
0)0( =tx  and tθ

r
 to the reverse orientation of target-

robot configuration and all other locations Dxi =)0(  

and Di =)0(θ
r

. The computational burden of this 
system depends on the total number of grid point M  
and the complexity of the environment. 

The proposed model and the distance model [10] 
have the same principle and configuration. The 
distance-propagating model has proven that ix  
converges to iy  and given the computational procedure 
of speed of convergence. We will not specify here again. 
However, unlike the distance model, the distance 
converges to iy ; our model’s vector-distance converges 
to iy∗ , where iy∗ is the sum of length of optimal path 
and measurement of the influence on the robot motion 
caused by the optimal path surface roughness. And the 
vector-distance ix  will converge to iy ∗  in N  time 
steps; the number of grid step N  is bounded by  
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where ⎡ ⎤ ⎣ ⎦ζζ  , represent ζ  rounded upward or 
downward to the nearest integer, respectively. 

2.4. Robot movement 
Since the vector-distance propagation is subject to the 
kinematics’ constraints of nonholonomic mobile robot, 
and once the vector-distance recorded by the grid point 
i  is a certain value, the optimal path tiΓ  joining target 
and the grid point i  through adjacent neighbors of free 
space for nonholonomic mobile robot is determined. 
Namely, the vector-distance along path tiΓ  is 
propagated from target to grid point i . The robot 
location )(tr  is specified as an index of one of the 
points on the grid, and is a function of real time 0tt ≥  
[10]. Initially,  

00 )( itr =  and 
00 )( itr θθ
r

−=∗  

Where )( 0tr
∗θ  is orientation of robot configuration at 

position )( 0tr , and 
0i

θ
r

−  is reverse direction of vector-
distance of grid point )( 0tr . 

We assume that the robot‘s travel path is updated at 
a set of real-time values ...... 10 <<<< +kk ttt  [10]. At time 

kt , the robot’s location is the grid points )( ktr , and 

)( ktr
∗θ  must be equal to )( ktrθ

r
− . The next updating time 

1+kt  and location )( 1+ktr  are determined (the robot 
motion heads up at the direction )( ktrθ−  from )( ktr  to 

)( 1+ktr  by the speed of one grid step in each time step). 
The )( 1+ktr  is defined as: 

⎩
⎨
⎧

=+ otherwise),),((
obstacleor  target is)(),(

)( 1 otrInd
trtr

tr
k

kk
k  

(10)  
Defined as [10], ),( oiInd  is the index of the 

closest neighbor through which the value of ix  was 
calculated and propagated to )( ktr . 

If the grid point )( ktr  is target or obstacle, the 
robot does not move, otherwise at next update time 1+kt , 
the robot will be at location )( 1+ktr  and  

1) )()(
11 ++ −=∗

kk trtr θθ
r

, and )( ktrθ
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 is not perpendicular 

to )( 1+ktrθ
r

; 
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trtrtrtr LIx . 
For the workspace of robots, the distance )()( 1 kk trtrd

+
 

between )( ktr  and )( 1+ktr  is one grid step, and the time 
interval kk ttt −=Δ +1  depends on vd

kk trtr )()( 1+
. The robot 

can simply follow the optimal path to the target using 
equation (10).  

3. Simuliation studies 

3.1. Motion planning for maze-type 
environment  

In this simulation, we show the solution to a maze-type 
problem and the influence on the robot motion caused 
by the road surface roughness. The robot can find its 
way through a complicated environment, which is 
topologically organized by 2020× . The position of 
entrance is (20, 1) and the position of exit is (1, 20). 
Obstacles are shown as black solid shaded area, as 
illustrated by Fig.5. Note in the circle, the broken line 
represents the path planed by other model [4] [5], which 
do not considered the influence on the robot motion 
caused by the road surface roughness. The measurement 



of the influence on the robot motion caused by the road 
surface roughness of grid point (16, 10) and (16, 11) is 
1  and 2 , by contraries, both grid point (15, 10) and 
(15, 11) is zero. The vector-distance spreads along the 
optimal path, rather than suboptimal path, which is 
represented by broken line, and the robot move along 
this optimal path.  
 

 

Fig.5: Maze through which the robot finds the shortest path 
and the path planed for the nonholonomic mobile robot is 
subject to the influence on the robot motion caused by the 
road surface roughness. 
 

3.2. Motion planning for parallel 
parking and U-shaped 
environment 

The path planning for parallel parking and U-shaped 
environment is shown in this simulation (see Fig.6).  

 

 

Fig.6: Path planning for parallel parking and U-shaped 
environment. 
 

The system plans the optimal path from initial 
position (16, 3) (the robot configuration is (16, 3, 4)) to 
the position of target (19, 14) rounding the obstacle 
represented by black solid bar. When the robot is close 

to the target, the robot adjusts its configuration along 
the path, finally, the robot parks parallel with initial 
configuration. The proposed model is able to plan the 
safe and optimal path for nonholonomic mobile robot. 

4. Conclusions 
Being different from the model in [10] where the 
distance propagation is omni-directional, the vector-
distance of proposed model propagates in some special 
direction and is vector. The novel concept, which is the 
influence on the robot motion caused by the road 
surface roughness, is proposed in our model by 
mathematical method. This model can comply with the 
property of real environment better, and the path planed 
by the model has more practicality. The model plans the 
path for nonholonomic mobile robot without explicitly 
searching over the obstacles and optimising any cost 
function, has advantages of low cost of storage and high 
computing efficiency. Our model is of advantages to 
distance-propagation model and can plan path for 
nonholonomic mobile robot. The robots can quickly and 
safely move along the path planed by our model and 
reach target.  
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