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Abstract

Different from the general way to overdetermined
blind source separation problem whose demixing
matrix is a nonsquare one just as the mixing ma-
trix, this paper proposed that using n (the number
of sources) elements of the mixture signals as the
new mixture signals to be separated, this means,
the dexmixing matrix becomes a square one. First,
the simulation shows the new approach works effi-
ciently as the general approach. Second, the feasi-
bility of the new approach is proved by comparing
the entropy of the different mixtures. Finally, some
interesting conclusions are obtained.
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1. Introduction

The blind source separation (BSS) intends to ex-
tract statistically independent components from
the sensor signals which are given as mixtures of
unknown source signals, moreover, the mixing en-
vironment also isn’t known as a priori. Recently,
this kind of blind technique has become an increas-
ingly important research area due to its signifi-
cant potential applications in various fields, such as
telecommunication systems, image enhancement,
sonar and radar systems, speech signal processing
and biomedical signal processing [1].

Since the pioneering work of Jutten and Her-
ault [2], various algorithms with different view-
points have been proposed for BSS [3]-[6]. In ad-
dition, most of these algorithms in the literatures
assume that the number of sensors is equal to the
number of sources, thus, the mixing matrix is a
square one, whereas, in most practical cases, this
assumption is not always hold good. When sen-
sors more (fewer) than sources, the BSS problem
is referred to overdetermined or undercomplete [7]
(underdetermined or overcomplete [8]) BSS. There-
fore, in general opinion, the demixing matrix of the

overdetermined mixtures is not square just as the
mixing matrix. But in practical experiments we
found that it’s not necessary to use a n × m (n:
the number of sources, m: the number of sensors)
demixing matrix, instead, a n×n demixing matrix
also can works well. Further more, it’s plausible to
use overdetermined mixtures to improve upon the
extracted signals of interest from mixtures. In this
paper, we focus on the overdetermined mixtures,
and prove the feasibility of the new approach with
information geometry.

2. Problem statement

Assume that there exists an n-dimensional unob-
served source vector st = [s1(t), · · · , sn(t)]T that
are zero-mean and mutually statistically indepen-
dent at each instant t. In the noise-free instan-
taneous case, the available sensor vector xt =
[x1(t), · · · , xm(t)]T is given by

xt = Ast (1)

where A ∈ Rm×n is a constant and unknown mix-
ing matrix of full rank. For the difficult case where
there are fewer mixtures than sources, m < n, sepa-
ration may be achievable only when the information
about sources and mixing environment is known as
a priori [8]-[9]. Therefore, in this paper we consider
the overdetermined case, m > n. The objective
of blind separation is to recover original signals st

from the observation xt without prior knowledge
on the source signals and the mixing matrix A ex-
cept for the independence of source signals. For
this purpose, the general solution is to adjust the
so-called separating matrix W ∈ Rn×m to optimize
the criterions under certain cost function, then the
output vector

yt = Wxt (2)

is the estimation of the source signals.
In [7], Zhang et al. had proved that the natural

gradient is available to blind separation of overde-
termined mixtures in virtue of the Lie group and



Riemannian metric on the manifold of mixtures.
Later, Ye et al. [10] showed that the mutual in-
formation of outputs of the separation network is
a cost function for overdetermined BSS. Thus, the
on-line learning algorithm is in the form

∆Wt = ηt

[
I−Φ(yt)yT

t

]
Wt (3)

where Wt is , in general, a nonsquare n×m demix-
ing matrix, ηt is a positive learning rate parame-
ter and Φ(yt) = [ϕ1(y1(t)), · · · , ϕn(yn(t))]T is
a nonlinear-transformed vector of yt . This algo-
rithm works efficiently and shows an ”equivariant”
[11] property. But, in our opinion, there exists re-
dundant information in the overdetermined mix-
ture signals xt , as when the sensor number m is
equal to the source number n, the BSS problem can
be solved well. Therefore, why don’t we choose n
elements from the m-dimensional sensor vector xt

as the new mixtures to be separated? Thus, pur-
sue a square n × n demixing matrix instead of a
nonsquare one.

Let the set of m elements of xt is X =
{x1, x2, · · · , xm}, and Xi (1 ≤ i ≤ Pn

m) is the
set which consists of the ith permutation of n el-
ements of set X. x̂t = [x̂i

1(t), x̂
i
2(t), · · · , x̂i

n(t)]T ,
where x̂i

j(t) denotes the jth element of the new vec-
tor x̂t, and is equal to the jth element of set Xi, i.e.,
x̂t is the new n-dimensional vector whose elements
are selected from xt . Therefore, the main objective
of overdetermined BSS problem becomes to search
an optimization for the square n× n demixing ma-
trix Ŵ, the output vector is in the form

yt = Ŵx̂t (4)

In practical, we found that this new approach
works as efficiently as the general way. For instance,
we consider separation of the following source sig-
nals:

• Sign signal:
s1(t) = sgn(cos(2π155t));

• Amplitude-modulated signal:
s2(t) = sin(2π90t) sin(2π300t);

• Phase-modulated signal:
s3(t) = sin(2π300t + 6 cos(2π60t).

In simulations, there are five sensors, and the el-
ements of 5×3 mixing matrix A are randomly as-
signed in the range [–1, +1]. For simplicity, the
front 3 elements of the sensor vector xt are selected
as x̂t for the new approach. To measure the per-
formance of the different ways, we introduce the

cross-talking error as the performance index [12],

PI =
1
m

m∑
p=1




n∑
q=1

|cpq|
max

l
|cpl| − 1




+
1
n

n∑
q=1




m∑
p=1

|cpq|
max

l
|clq| − 1


 (5)

where C = WA = {cpq} is the combined mixing-
separating matrix. Then, the performance of two
approaches is showed in the Figure 1.
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Fig. 1: Average performance indexes over 100 in-
dependent runs of the two approaches.

According to Figure 1, the new approach works
as well as the general one, even more gets a bet-
ter performance at the primary separating, and
when the time goes, the different ways almost have
equal performance at all as they converge in the
same direction. Consequently, it’s nonsignificant
to use overdetermined mixtures to improve the sep-
aration algorithm, and actually, we can use the n-
dimensional mixtures instead of the overdetermined
mixtures with the same performance and less com-
putation. In the next section, we study the validity
of the new approach by comparing the (differential)
entropy of mixtures.

3. Entropy of mixtures

Decomposing the mixing matrix in the following
form (such as QR factorization or singular value
decomposition ):

A = QT

[
A1

0

]
(6)

where matrix Q ∈ Rm×m is an orthogonal normal-
ized matrix, A1 ∈ Rn×n is a nonsingular matrix.



So the mixing model can be denoted as:

x = As = QT

[
A1s
0

]
(7)

Since the entropy is referred to a variable not a
sample, the subscript t of the vectors is omitted
in above equation. An important property of the
entropy is that it is invariant for orthogonal nor-
malized linear transformations. Thus, we have the
entropy of mixtures of general approach:

H(x) = H(A1s) = H(s) + log |det(A1)| (8)

For simplicity, we consider the front n elements of
the mixtures x as the new mixtures x̂, because
choosing another n elements is equivalent to add
a permutation matrix to x, and it is do nothing to
the entropy of x̂. So the decomposition of x with
respect to x̂ is given by:

x =
[
x̂
x̃

]
(9)

Correspondingly, we decompose the orthogonal
normalized matrix:

Q =
[
Q1 Q2

Q3 Q4

]
(10)

where Q1 ∈ Rn×n and Q2 ∈ Rn×(m−n). According
to equation (9) and (10), we obtain the entropy of
mixtures of new approach:

H(x̂) = H(QT
1 A1s)

= H(s) + log |det(A1)|+ log |det(QT
1 )|

(11)
Comparing the equation (8) and (11), we can find
the relationship readily between the new mixtures
x̂ and the overdetermined mixtures x in the view-
point of information theory, that is, x̂ is achieved
when x gets through another linear transformation
QT

1 which is determined by the orthogonal normal-
ized matrix Q. Here, introduced another matrix
B1 = A1QT

1 , thus the relationship is illustrated in
the Figure 2.

Obviously, the structure of the model of new
approach is similar to the general one, and they
are equivalent in the information-theoretic sepa-
ration algorithms by introducing the matrix B1

since there is not more information about x than
x̂. Therefore, we can get the following conclusion:
it’s available that using n-dimensional vector whose
elements is selected from the overdetermined mix-
tures instead of the m-dimensional vector to be sep-
arated.
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Fig. 2: the relationship of the two different ap-
proaches in information-theoretic sense.

4. Conclusion

In this paper, we study the overdetermined BSS
problem where the sensor number m is not less than
the source number n. Comparing with the general
approach that using all sensor signals as the mix-
tures to be separated, a new approach that selecting
n sensor signals as the mixture signals to be sepa-
rated is proposed. Besides, the validity of this new
approach is also be proved by means of comparing
the entropy of the different mixtures. Obviously,
the new approach needs less computation than the
general one, because we search an optimal n × n
demixing matrix instead of a n×m one, especially
in array signal processing where the sensor number
m may be large more than the source number n.
Moreover, there is an additional interesting conclu-
sion: now that the new approach works efficiently
as the general one, that means, it’s unuseful to use
more sensors than sources to improve upon blind
source separation algorithms in extracting the sig-
nals of interest from mixtures. A complete theo-
retical proof of this interesting conclusion will be
given in the future work.
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