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Abstract 
An adaptive method for predicting short-time traffic 
flow, which is based on phase space reconstruction 
and Volterra series was proposed. We first employed 
Lyapunav exponent method based small data sets to 
validate that chaos exists in traffic flow. Then, phase 
space reconstruction for traffic flow data was 
performed. And we constructed Volterra adaptive 
prediction model, which coefficients were updated by 
LMS adaptive algorithm. We finally applied this 
model to execute simulations for chaotic time series 
and real measured traffic flow data. Experimental 
results show that Volterra adaptive model can 
effectively predict chaotic time series and traffic flow. 
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1. Introduction 
Traffic guidance and control is usually considered as 
one of important components for intelligent 
transportation system (ITS). Real-time and exact 
prediction of traffic flow is the premise that realizes it. 
Because of strict real-time demands of traffic guidance 
and control, i.e. the maximum period of traffic control 
is usually about 3 minutes and the period of traffic 
guidance is usually 5 minutes, the key of ITS 
realization is to exactly and effectively predict traffic 
flow within 5 minutes. When the prediction period 
becomes small traffic flow usually shows very strong 
uncertainty and nonlinearity [1]-[2]. References [3]-[4] 
proved that traffic flow time series possesses some 
chaotic characteristic. Based on Takens’ embedding 
theorem and phase space reconstruction [5]-[6] which 
provides theory foundation for predicting chaotic time 
series, many nonlinear prediction methods have been 
put forward. These prediction methods can be divided 
into global method, local method and adaptive method. 
Compared with global and local method, adaptive 
prediction method possesses many merits, in which 
Volterra adaptive method based on phase space 
reconstruction has been widely applied in some 
low-dimension chaotic time series predictions. This 

adaptive method uses very small training samples to 
perform better predictions for chaotic series, and is 
therefore suitable for small data cases. This paper first 
applies Volterra series to traffic flow predictions and 
constructs Volterra adaptive prediction model for 
traffic flow. Subsequently, the adaptive model is 
applied to execute simulations for two classic chaotic 
time series generated by Lorenz and Rossler and real 
measured expressway traffic flow data. 

This paper is formed as follows. Section 2 gives 
the flow chart of short-time traffic flow prediction; 
Section 3 describes phase space reconstruction for 
traffic flow time series; Section 4 develops the 
Volterra adaptive prediction model; Section 5 
performs simulations for chaotic time series and the 
real measured expressway traffic flow data, and the 
last is conclusions. 

2. Structure of short-time traffic 
flow prediction 
Based on phase space reconstruction and Volterra 
series, an adaptive method for predicting short-time 
traffic flow is presented, as shown in Fig.1. At first, 
single-variable traffic flow time series { })(nq  is 
acquired by observing the real traffic system. Then, 
phase space reconstruction for this time series is 
performed and we get a point in the reconstructed state 
space: 
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r  

Subsequently, as long as proper embedding dimension 
m  and delay time τ  are selected, the geometrical 
construction of traffic dynamic system is equivalent to 
the one of m -dimensional reconstructed state space 
which can be used to make predictions for traffic flow 
time series. And, based on Volterra series expansion 
we construct Volterra adaptive prediction model, 
which coefficients are updated by LMS-type adaptive 
algorithm derived from least square error. We use this 
adaptive model to predict traffic flow in the 
reconstructed state space with input )(nq

r
 rather than 

the original traffic flow time series. The obtained 
reliable and exact short-time traffic flow prediction 
results from Volterra adaptive prediction method can 



provide better reference and information for traffic 
guidance and control. 
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Fig. 1: Flow chart of short-time traffic flow prediction. 

3. Phase space reconstruction for 
traffic flow time series 
F. Takens [5] and R. Mane’s [6] delay embedding 
theorem is the foundation for phase space 
reconstruction. This theorem indicates that so far as 
proper embedding dimension m  and delay time τ  
are selected, the geometrical construction of the 
original chaos dynamic system is equivalent to the one 
of m -dimensional state space. So, they have the same 
topological structure, which means that prediction 
issue can be changed into a short evolvement process 
in the phase space so as to lay solid foundation for 
chaotic time series prediction [7].  

Consider the observed single-variable traffic flow 
time series: 
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where 0t  denotes initial time and tΔ  sample time 
interval. Select suitable embedding dimension m  
and delay parameter τ , and then reconstruct an m - 
dimensional state vector by equation (1): 
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From equation (2) we can get: 

)()1()(
))1(())1(1())1((

)2()21()2(
)()1()(

)()1()(

00

00

00

00

00

NqNqNq
mNqmNqmNq

NqNqNq
NqNqNq

NqNqNq

r
L

rr
L

MMMM

L

L

L

+
−−−−+−−

−−+−
−−+−

+

τττ

τττ
τττ

 

where 1)1(0 +−= τmN , )(nq
r

 represents a phase 
space point. The m -dimensional sequence 
{ }NNNnnq ,,1,|)( 00 L
r

+=  constructs a phase pattern 
which represents the instant state for traffic flow 
system. The states of )(nq

r
in ascending time order 

can describe evolvement trajectory of traffic flow 
system in m -dimensional phase space. The 
evolvement progress of state space )1()( +→ nqnq

rr
 

reflects upon the traffic system evolvement. So, we 
can use history traffic flow data to predict the future. 

The selection of delay time τ  and embedding 
dimension m  has very important meaning in phase 
space reconstruction and also has relative difficulty. 
Reference [7] summarizes many methods, in which 
autocorrelation function method is a rather simple 
approach for deciding delay time τ , and mutual 
information method [8] broadly used in phase space 
reconstruction is an effective technique for estimating 
delay time τ . And the most employed technique for 
selecting embedding dimension m  has false 
neighbor method [9] and trial algorithm method. In 
this paper we use mutual information method to select 
delay time τ  and employ false neighbor method to 
estimate embedding dimension m . 

4. Volterra adaptive prediction 
model 
Phase space reconstruction theory is the foundation of 
chaotic time series prediction. Assume that the 
observed traffic flow time series is { }N

nnq 1)( = , and 
then a point in the state space can be expressed as: 

)])1((,),(),([)( ττ −−−= mnqnqnqnq L
r  

From Takens’ theorem, the essence of prediction 
reconstruction for chaotic series is an inverse problem 
of dynamic system. This means that dynamic model is 
reconstructed by the condition of dynamic system, 
which is equivalent to constructing the model: 

))(()( nqFTnq
r
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where 0>T  denotes the forward prediction step size. 
Because the observed sequence must contain some 
noise such as measure error and other disturbance, a 
practical prediction model can be written as: 

)())((ˆ)( tnqFTnq ε+=+
r

 
where )(tε  is measurement noise or approximation 
error. So, this issue changes to the problem of 
constructing a prediction model. 

Many methods exist for constructing a nonlinear 
function to approximate )(⋅F . It has been proved that 
lots of nonlinearity system can be represented by 
Volterra series [10], which can be used to construct 
nonlinear prediction model )(⋅F  for chaotic time 
series. Assume that the input of this model is: 



)])1((,),(),([)( ττ −−−= mnqnqnqnq L
r

 
and output is )1()( += nqny . So, Volterra series 
expansion for chaotic time series can be expressed as: 
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where LL ,,,, 10 phhh  are called the kernels of the 
system, ky  indicates the k -th order term which has 
the corresponding kernel kh . In practical application, 
because this infinite series expansion is difficult to 
realize, we must take some strategies such as finite 
truncation and finite summation form. One broadly 
used is a second-order truncation form of the Volterra 
series: 
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From Takens’ embedding theorem, a chaotic time 
series could completely describe dynamic action of the 
original dynamic systems if at least 12 +> dm  ( d is 
the dimension of dynamic systems) variables have 
been chosen. Let mNN == 21 , Volterra adaptive 
prediction model for traffic flow time series can be 
expressed as: 
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Simultaneously, let: 
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So, equation (3) can be rewritten as: 

)()()1(ˆ nQnHnq T=+           (4) 
For Volterra prediction model described by 

equation (4), we use LMS-type adaptive algorithm 
derived from least square error to update its 
coefficients. When the vector of this model coefficient 

uses )(nH  and the vector of input signal )(nQ  
LMS algorithm can be described as follows [11]: 
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where )20( << μμ  is the convergence step size, 

)(nd  is the desired value and choose )()( nqnd = . 
Fig.2 shows the structure of Volterra adaptive 
prediction model for traffic flow. 
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Fig. 2: Structure of Volterra adaptive model. 

5. Simulation and Discussion 
In this section, we will apply the proposed Volterra 
adaptive prediction model to perform simulations for 
the simulated chaotic time series and the real 
measured traffic flow data. First we normalize chaotic 
time series by equation (5): 
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where { })(iy  represents the original time series, 
{ })(ix  normalized time series and N  series length. 
In this paper, we take mean square error (MSE) as the 
evaluation criterion, which definition is: 
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where )(kx  is the desired value, )(ˆ kx  prediction 
value and pN  series length. Next we will give the 
simulations for chaotic time series and the real 
measured traffic flow using second-order Volterra 
adaptive prediction model based on chaos dynamics. 



5.1 Predictions for Lorenz and 
Rossler chaotic time series 
In the experiment chaos mapping is directly iterative 
according to the initial value. The integral step size of 
Lorenz series takes 0.01 and Rossler 0.05. Then use 
fourth-order Runge-Kutta integral method to compute 
simulated time series data including 8000 points. For 
the sake of reducing instant influence, we only employ 
the last 2000 data as the experimental data, in which 
the former 500 data are used as training sample and 
the other 1500 data as testing sample. 
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Fig. 3: Prediction results for Lorenz chaotic time series 
using second-order Volterra adaptive model. (a) A 
comparison between desired value )(nx  and prediction 
value )(nxp ; (b) Absolute error )()()( nxnxne p−= . 
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Fig. 4: Prediction results for Rossler chaotic time series 
using second-order Volterra adaptive model. (a) A 
comparison between desired value )(nx  and prediction 
value )(nxp ; (b) Absolute error )()()( nxnxne p−= . 

 

Fig.3 and Fig.4 are prediction results for Lorenz 
and Rossler chaotic time series using Volterra 
adaptive prediction model, respectively. We can see 
that satisfying prediction results have been obtained. 
By computation from equation (6) we get the MSE for 
Lorenz time series is 5.9687e-006 and Rossler time 
series 1.3401e-005. 

5.2 Traffic flow prediction 
Traffic flow data used in the experiment come from 
the ring expressway in Xi’an city. Recording time is 
from April 2nd, 2006 on every Sunday, which covers 
consecutive ten weekday’s morning traffic flow from 
8:00 am to 11:00 am. Sample time interval is for 5 
minutes. So, 360 data is obtained. Traffic flow data 
graph shows in Fig.5. 
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Fig. 5: Time series graph for traffic flow. 

 

First we decide that whether chaos exists in traffic 
flow data. By computing Lyapunav exponent based 
small data sets we get the maximum value 

610.01 =λ  that is positive, which means that chaos 
exists in traffic flow system. Then, we figure out the 
best delay time 7=τ  and the least embedding 
dimension 4=m  for traffic flow time series 
{ }220

1)( =nnq  respectively using mean mutual 
information method [8] and false nearest neighbor 
method [9], as shown in Fig.6 and Fig.7. So, phase 
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Fig. 6: Graph for delay time using mean mutual information 
method. 
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Fig. 7: Graph for embedding dimension using false nearest 
neighbor method. 
 
Space reconstruction for traffic flow time series is: 
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Let { }220

1)( =nnq  as training sample to train the 
second-order Volterra adaptive model. Then predict 
the last 140 traffic flow data { }140

1)220( =+ ppq , which 
prediction results are shown in Fig.8. Simulation 
results show that tendency for prediction value is 
consistent with the desired value. Prediction MSE is 
2.332e-003, which shows that prediction results are 
capable of reflecting upon the tendency and rule for 
traffic flow. And, prediction precision is rather high, 
which can completely satisfy high precision demand 
for traffic guidance and control. 
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Fig. 8: Prediction results for traffic flow time series using 
second-order Volterra adaptive model. (a) A comparison 
between desired value )(nx  and prediction value )(nxp ; 
(b) Absolute error )()()( nxnxne p−= . 

6. Conclusions 
We employed Volterra series expansion to construct a 
nonlinear adaptive prediction model, which is based 
on phase space reconstruction theory, and applied it to 
predict two chaotic time series and the real measured 
traffic flow. Simulations show that the second-order 
Volterra adaptive prediction model proposed in this 

paper is capable of effectively predicting chaotic time 
series and traffic flow series. And prediction precision 
is rather high. This is because that the proposed 
Volterra adaptive prediction model can effectively 
make use of linear and nonlinear factors and high 
moments of chaotic time series. So, for traffic 
guidance and control, the proposed method provides 
meaningful attempts for exactly predicting short-time 
traffic flow from the aspect of nonlinear time series 
analysis. 
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