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Abstract 
It is very difficult to solve the large-scaled in the 
semiconductor device simulation, sparse and ill-
conditioned matrix equation exactly and quickly. So 
the particle swarm optimization algorithm（PSO） 
based on the swarm intelligent technology is presented 
to get the global optimal solution of the matrix 
equation. This proposed algorithm is mainly to 
optimize the position of the particle in stead of solve 
the matrix equation. First of all, initialize the position 
and velocity of particles, then renew the iterative 
solution, until to search the global optimum. The 
example to solve the potential in linearly graded p-n 
junctions indicates that the improved PSO algorithm 
introduced in the paper is superior to Newton 
algorithm and traditional PSO in precision, velocity of 
convergence and saving memory. The simulation 
results of diodes are accord with that of theoretical 
analysis, which shows the PSO algorithm is applicable 
and accurate. 
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1.  Introduction of the problem  
The simulation of semiconductor devices is to obtain 
the functional relationship of static voltage, the 
electron and hole concentration versus time or space, 
moreover, get the characteristic at any bias and other 
physic states by solving the basic equations. In the 
condition of knowing the manufacture material, 
feature size and adulterating distribution the 
simulation result can offer good reference for devices 
manufacture and design[1]-[2]. 

The basic equations are Poisson equation, carrier 
concentration equations and current continuity 
equations. The Poisson equation is as follows: 
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Also, The current density equation is as follows:  

nqDEnqJ nlnn ∇+=
→

μ                                 (2) 

pqDEpqJ plpp ∇−=
→

μ                                (3) 

The current continuity equation is as follows: 
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While the feature size of the device is small 
enough to a certain value, there will be very large error 
and along with other physical phenomenon as carrier 
shot and electronic velocity overshot et al 
unaccountable non-linear transport phenomena in 
MOS devices. When the feature size of device (as the 
grid length of FET) reaches to a certainty value 
(0.1μm for silicon devices, 0.5μm for GaAs devices), 
the current continuity equation will be replaced by 
Boltzmann equation[3]-[4], namely: 
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Where f is the carrier distributing function, 

)',( kkp  is the probability of carrier-wave vector 

from k  to 'k .  
It is difficult to solve the PDE, and could not get 

the accurate solution easily in general numerical way. 
So the key to semiconductor devices simulation is to 
solve the liner equation group precisely. Through 
studying the intelligent optimization algorithm 
PSO,we improve it and use it to solve the liner 
equation group. The simulation result of diode 
indicates that the PSO is better than numerical method 
in semiconductor simulation. 

2. PSO algorithm (particle swarm 
optimization algorithm) 

2.1. Introduction of PSO and its 
improvement 



 PSO algorithm is a new evolutionary computation 
technique, Kennedy and Eberhart proposed the PSO 
algorithm model firstly[5], which searches the optimal 
result in high dimension space with the cooperation 
and competition among all individuals. Usually 
particles of every generation will pursue two best 
results: one is the pbest,  the individual best result, 
reached by each particle pbest, which stands for each 
particle’s cognizing level to optimal direction; the 
other is gbest, which stands for the social cognizing 
level of the swarm, is the group best result reached by 
the swarm. All particles moved according to following 
equations: 
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iii vxx += −1                                                             (8) 
According to the above model, we can have two 

supposes. 
Suppose 1: the acceleration 

constant ∞→21 ,ϕϕ , then the maximum 
velocity ∞→v , so the particle swarm may miss the 
optimum solution, and induce the algorithm non-
convergence. 

Suppose 2: In order to get the gbest, 
take 21 ,ϕϕ little enough, so the maximum velocity v  
will be small enough. And the convergent velocity is 
so slow, and the time is so long, that the memory is 
not enough to do the calculation. So the particle can 
not continue to optimize.  

Therefore, we add convergence constant χ ， 
inertia weightω and restraint constantα to the base 
model to get the improved model [6]: 
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2ϕ > 4，ϕ usually equals to 4.1，soλ =0.729，the 
process of this algorithm is as follows: 

Step1 Initialize the particle swarm. Suppose 
accelerate constant 1ϕ and 2ϕ , inertia weightω , the 
maximum iterative times maxITER , ITER is current 
iterative time. In  defined space nR , initial 
population ( )tX is composed of the particles 

sxxx ,,, 21 L by random, and the matrix of 
velocity ( )tV is composed of initial 
velocities svvv ,,, 21 L by random, the individual 
optimum solution ipbest of every particle is 
initialized by the original value of ix ； 

Step2 Update the velocities and positions of 
particles according to the equation (9) and (10) to 

generate new population ( )1+tX . The rule of 
adjusting velocity is as follows:  
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Step3 Evaluate the fitness of every particle. 
Define the fitness function as following:  
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Where iŷ and iy are respectively calculated result 

and reality result. We can calculate the fitness function 
according to the mean square deviation of residual 
( )Axy −  to resolve the detail matrix equation, i.e.:  
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The smaller )(xf is, the stronger the adaptability 

is. 
Step4 With regard to every particle, compare 

current fitness )( ixf with the fitness of the best 
position in the history )( igbestf . 
If )()( ii gbestfxf < , then ixpbest = ; Compare 
the current fitness of all particles in the swarm with 
the fitness of the best position in the population, 
if )()( ii gbestfxf < , then the globally optimal 
solution ii xgbest = ; 

Step5 Check the termination condition, if met, 
then finish searching optimum and the solution is the 
current optimum individual; otherwise 1+= tt , turn 
to step 2. The termination condition supposed is 
reaching the maximum iterative times maxITER or the 
evaluate value is less than the given accuracy;  

2.2. Application example  
Now we can solve a large-scaled, sparse, and ill-
conditioned matrix equation to describe the PSO 
application in semiconductor device simulation is 
feasible and effective. By calculating the potential 
distribution of graded p-n junction to validate the 
algorithm. 

Divide p-n junction into N parts, h is interval. In 
every small interval the nonlinear equation can be 
approximated to linear equation. So the original 
differential equation can be rewritten as follows[1]: 
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The boundary condition is as follow ： 
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Where, the electron hole effective quality 

m=1e+21 ， intrinsic electron concentration 
in =1.4e+10, and θ =38.5. 

Finally, we obtain the linear equation 
group BAx = , where A  is a large-scale sparse ill-
conditioned matrix of 49× 49，the mesh parameter 
N=50, h=0.07. The matrix equation is to be solved by 
PSO, ordinary PSO and the Newton iteration 
algorithm respectively. 

The parameters of improved PSO is that particle 
number is 13, precision is 1e-20, iterative epoch is 
5000. The curve of mean-square error is shown in Fig 
1. We know the convergent error is 1e-15, when the 
iterate epoch is 70. The precision is very high. 

Fig 2 shows the potential characteristic of the p-n 
junction. At the right of the neutral region, the 
potential becomes higher but potential energy lower as 
the x increasing. 

 

Fig. 1: The convergence error of improved PSO. 
 

Fig. 2:  Potential along x axis. 
 

From the figure 3, we know the convergence 
error is 4.2008e-2, when the iterate epoch is 190, and 

latter the convergent velocity become slow. Finally the 
error reach 4.1399e-2, when the iterate epoch is 1000, 
obviously, the convergent precision is not very high. 
And the Newton iteration method is sensitive to iterate 
initial-value, prone to go to local minimization, so the 
improved PSO is superior to Newton iteration method 
in semiconductor device simulation. 
In order to show the superiority of improved PSO, we 
calculate the matrix equation by ordinary PSO too, 
where the parameters is similar to improved PSO, i.e. 
particle number is 13, precision is 1e-20, iterative 
epoch is 5000. convergence curve is showed in figure 
4. The curve starts to converge when the epoch is 
25000, and the error reaches 5.1407e-5, till 50000. 
 

Fig. 3:  Convergence curve of Newton algorithm. 

Fig. 4: Convergence curve of ordinary PSO. 
 

Obviously, the improved PSO is superior to 
ordinary PSO and Newton iteration method at precise 
and convergent velocity. So the improved PSO is 
practicable. 

3. The simulation of diode  
In order to show the effectiveness of the improved 
PSO, we simulate and analysis the more complicated 
device, diode. 
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Fig. 5:  Structure of p-n diode. 
 

The effective impurity concentration equation 
is

2
2

2
1 )()( xwm

DB
xm

A eNNeNx −=− ++−=Γ . Fig 6 
shows the curve. 

 
Fig. 6: Adulteration along x axis. 
 

The solving process as follows epochs: 
1) First, divide the diode along x axis. The main 

point is N = 1 to L corresponding to the p-n junction 
side point x= 0 and x = W. Furthermore, assistance 
point M is between N and N+1.Now let N=51. 

 
 
 

Fig.7 Compartmentalize along x axis 
 

2) Calculate the differential coefficient of p、n 
and ψ  at these assistance lattice point,  to improve the 
differential approximate precision. The five equations 
can be written as: 
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The Taylor expansion of p 、 n 、ψ are 
neglected the high-order terms. The liner continuity 
equations come into being. At last, the equations can 
be: 
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3) Confirm the initial boundary conditions, )1(yδ

＝
)(Lyδ

＝ 0, and initial value )(0 Ny ＝

TNNnNp ](),(),([ 000 ψ , 
0y is the first iteration value, 

and then according to yyy δ+= 01
, get the value 

of yδ  with CPSO, and then get 
1y , 

2y  et al, 

till εδ <yy / (ε =1e-10). 
4) Analysis: matrix equation (16) shows the inner 

characteristic of diode. 
Figure 8 shows the inner potential distribution 

curve ,which indicates the potential is smaller 
gradually from p to neutral region, but bigger from 
neutral region to n. In neutral region the potential is 
not smooth owing to the non-uniform adulteration. 

Figure 9 shows the carrier concentration curve, in 
which curve 1 describes the concentration of p, curve 
2 describes that of n by improved PSO algorithm; And  
curve 3 and 4 is the result of reference. We can see 
that in p region (x=0~1.703μm), the hole 
concentration is 9e+16(curve ), electron concentration 
is 2.1778e+3; but in neutral region 
(x=1.703~3.2895μm) electron and hole are basically 
equal to 1e+10; in n region (x=3.2895~3.5μm), 
electron concentration is 5.9994e+016, hole 
concentration is 3.267e+3. 

The simulation result is mostly accord with the 
theoretical analysis. So it shows the improved PSO is 
a good algorithm in semiconductor devices simulation. 

 

Fig. 8:  Potential along x axis. 
 
 



 

Fig. 9: Concentration of carriers along x axis. 

4. Conclusion 
The above actual simulation example shows that the 
improved PSO is superior to ordinary PSO and 
Newton iteration method in matrix equation solving, 
moreover, can be used in semiconductor devices 
simulation applicably and effectively. The further 
exploration to the improved PSO is to simulate the 
more complicated quantum devices, and the feasibility 
of imbedding in simulation software. 
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