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 Abstract 
      In this paper, the problem of testing exponentiality against used better than aged in 
convex ordering classes of  life distributions is investigated. For this property a 
nonparametric test is presented based on kernel method. The test is presented for 
complete and right censored data. Furthermore, Pitman's asymptotic relative efficiency 
(PARE) is discussed to assess the performance of the test with respect to other tests. 
Selected critical values are tabulated. Some numerical simulations on the power estimates 
are presented for proposed test. Finally, examples in medical sciences are used as 
practical applications for the proposed test.  
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1. Introduction 

      During the past decades, various classes of life distributions have been proposed in 
order to model different aspects of aging. The best known of these classes are IFR, IFRA, 
DMRL, NBU, NBUE, and HNBUE. Properties and applications of these aging notions 
can be found, in Bryson and Siddiqui [6], Barlow and Proschan [4], Rolski [10], Klefsjö 
[9], and Stoyan [12]. 
 
     Let X be a random variable describing the life time of a brand new device which 
begins to work at time t = 0. As usual in the reliability, we denoted by tX  the life time of 

Journal of Statistical Theory and Applications, Vol. 13, No. 2 (June 2014), 111-121

Published by Atlantis Press 
Copyright: the authors 

111

willieb
Typewritten Text

willieb
Typewritten Text
Received 24 December 2013

willieb
Typewritten Text
Accepted 19 May 2014

willieb
Typewritten Text



M. M. Mohie El-Din, S. E. Abu-Youssef, M. KH. Hassan  

 

the device of age t with t ≥ 0. The probability that the device of age t still 
working till time x (the survival function) is, 

)(/)(]|[)( tFtxFtxtxXPxFt  , where )(xF is the survival function of X. 

Some properties concerning the asymptotic behavior of tX  as t  will be used. 

 
Definition (1.1): (Bhattacharjee, [5]),  If X is a nonnegative random variable, its 
distribution function F(x) is said to be finitely and positively smooth if a number γ � (0, 
∞) exists such that  x

t
t

exF 


)(lim  for all 0x , where γ will be called the asymptotic 

decay coefficient of  X. 
Denoting eX  be an exponentially distributed random variable with mean  /1  , the 

following definitions implies that tX  converges to eX  in distribution written 

as e
D

t XX  . This property is useful for description of random life times of devices of 

unknown age. 
 
Definition (1.2): The distribution function F is said to be used better than age (UBA) if 

for all x, t ⩾ 0;      x
t exF )(  or xetFtxF  )()( .                                            (1.1) 

 
          From definition (1.2), we have the following definition: 
 
Definition (1.3): The distribution function F is said to be used better than aged in convex 
ordering (UBAC) if for all x, t ⩾ 0   

           duetFdutuF u

xx




  )()(    or xetFtx 


  )(

1
)(                                (1.2) 

Where:  





tx

duuFtx )()(  . 

      We observe that the inequality of (1.2) is achieved when F(x) has an exponential 
distribution with mean   equal to the coefficient of the asymptotic decay , where the 
exponential distribution is the only one which has the lack of memory property. Willmot 
and Cai [13] showed that the UBA class includes the DMRL class. While Al – Nachawati 
and Alwasel [2] showed that UBAC class includes the UBA class of life distribution. 
Thus, we have IFR � DMRL � UBA � UBAC. 
 

    Testing exponentiality against the classes of life distribution based on kernel method 
has seen a good deal of attention. For testing against IFR and DMRL, we refer Ahmed 
[1]. Our goal in this paper is to propose a new nonparametric test for exponentiality 
against UBAC based on kernel method in section 2. We use Pitman's asymptotic relative 
efficiency (PARE) to assess the performance of the test and make a comparison with 
other available tests, in section 3. A nonparametric test is presented for right censored 
data in section 4. Finally, examples using data from Attia et al [3] in medical science is 
given in section 5. 
 
 

Published by Atlantis Press 
Copyright: the authors 

112



Testing Exponentiality Against UBAC Using Kernel Methods 

 

 

 

2. Testing Exponentiality Versus UBAC Class Based On Kernel Method 
 

          Suppose the lifetime X of a component has a distribution function F which is 
unknown to us. Available to us are independent observations on n components; i.e. we 
have at our disposal a random sample nXXX ,...,, 21  from the distribution F. We have a 

null hypothesis 0H  and its alternative 1H , where 0H : F is exponential versus 1H : F 

belongs to the class UBAC and F is not exponential. 
    Ismail and Abu-Youssef [7] introduced testing exponentiality versus UBAC class 
based on U-statistic but in this paper, we suggest testing exponentiality versus UBAC 
class of life distribution based on kernel method as follow: 

 
 

 
0 0

)()()]()(
1

)[( tdFxdFtxetFxf x
K 


  .                                          (2.1) 

          It is easy to see that if F is exponential, then  0K  , while under 1H , we 

have 0)(K . Since the distribution function F is unknown to us, as a consequence we 

do not know the K . This means we need to construct  K̂  a good estimator of K . This 

can be done in terms of nF , the empirical distribution function based on the available 

sample nXXX ,...,, 21  from F. 

         The estimator K̂  of our test statistic is defined by 

 
 

 
0 0

ˆ )()()](ˆ)(ˆ1
)[(ˆˆ tdFxdFtxetFxf nnn

x
nnK 


  .                                    (2.2) 

         As usual we denoted by )()2()1( ,...,, nXXX  the corresponding ordered sample and if 

nF̂  is the empirical distribution function, then 



n

j
jn xXI

n
xF

1

)(
1

)(ˆ  is the empirical 

survival function, and 
n

i
xFn )(  for ),[ )( XXx i , where i=1,2,…,n.   

         In order to suggest an estimator for K  we first construct estimators )(ˆ xn , ̂  and 

)(ˆ xfn   for  )(x ,   and )(xf  respectively. 



n

i
iin xXIxX

n
x

1

),()(
1

)(̂      





n

i
ix

n

1

̂  and   





n

l n

l

n
n a

Xx
K

na
xf

1

)(
1

)(ˆ where )( xXI i   is the indicator function; 

,1)(  xXI i  if xX i  ; otherwise .0)(  xXI i  and K(.) be a known probability 

density function, symmetric and bounded with mean zero and finite variance 2
K . Let na  

be a sequence of real such that 0na  and nna , n . 

 
These properties suggest writing the following estimator as  
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                                                                                                                                     (2.3) 

    To make the test statistic in scale invariant, we take
X

K
K




ˆ
ˆ*  .                              (2.4)     

    In order to use the U-statistic procedure, we set  

 )]()()(
ˆ
1

)[(),,,( 32132131
ˆ41

4321
2 XXXIXXXXXIe

a

XX
KXXXX X

n




 


  

                                                                                                                                    (2.5) 
       Here 1X , 2X , 3X  and 4X  are four independent lifetimes each with distribution 

function F. We define the symmetric kernel as  


R

XXXXXXXX ),,,(
!4

1
),,,( 43214321   

Where the sum is over all permutations of 1X , 2X , 3X  and 4X .Then K̂  is equivalent 

to the U-statistic  














lkji
n XXXX

n
U ),,,(

4

1
4321  

Our test is rejects for large value of nU . 

 

Theorem (2.1): If 04 nan  as n  , )ˆ( **
KKn    is asymptotically normal with 

mean 0 and variance 2V where, 

   
 

 
0 0 0 0

11
2

1 1

)]()()()()(
1

)[(2[
u X yX

u ydFudFyuXudFydFeXfVarV 
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Proof: We use theorem of Serfling [11], which states that if 1c , then  

),()( 1
2cmoNUn n  , where )].([ 11 XVarc   we need to find )( 1X  which is by 

definition  
              ]|),,,([)( 143211 XXXXXEX   ]|),,,([ 14312 XXXXXE                      

]|),,,([ 14132 XXXXXE   ]|),,,([ 11432 XXXXXE   

This can be written explicitly as follows: 

   
 

 
0 0 0 0

1114321

1 1

)()()()()(
1

)[(]|),,,([
u X yX

u ydFudFyuXudFydFeXfXXXXXE 


                               

(2.6)  
Similarly, we have  
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                                                                                                                                        (2.7) 
and  
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                                                                                                                                   (2.8) 
         Observe that ]|),,,([ 14132 XXXXXE  has the same representation as (2.6). By 

taking the variance of )( 1X we get 1c . 
 
Corollary (2.1): If the null hypothesis 0H is true, i. e., the lifetime distribution F is 

exponential, then as we mentioned before, 0K  and we calculate explicitly the null 

variance, 387.02
0 V . 

 
Proof: Under 0H , xexFF  )(0  and by direct calculation we found            

])3724()7(6[
12

1
)( 11 2

1110
XX eXeXX    

Thus, E [ 0)]( 10 X  and Var[ 387.0)]( 110  cX . 

 

     To conduct the test, calculate 0/ˆ Vn K   and reject 0H  if this value exceeds the 

standard normal value 1Z . To illustrate the test, we have simulated the upper percentile 

points for the significance level 01.0 , 0.02, and0.05. The calculation of the test K̂  is 
based on 10000 simulated samples from the standard exponential distribution. Table (1), 

gives the critical values of the test statistic K̂ . Figure (1) shows the critical values of the 

test statistic K̂  are decreasing as the sample size increasing as follow: 
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Table (1): Critical value for K̂  
 

n 95% 98% 99% 
4 0.607514 0.722601 0.800363
6 0.50763 0.601598 0.66509 
8 0.431089 0.512468 0.567453
10 0.385577 0.458365 0.507546
12 0.351982 0.418428 0.463324
14 0.325872 0.387389 0.428954
16 0.304826 0.362369 0.40125 
18 0.290954 0.345206 0.381863
20 0.276294 0.327763 0.362539
22 0.259956 0.30903 0.342187
24 0.247201 0.294185 0.325931
26 0.239125 0.284266 0.314767
28 0.230427 0.273925 0.303317
30 0.222613 0.264637 0.293032
32 0.231136 0.271826 0.299319
34 0.207966 0.24744 0.274112
36 0.203217 0.24158 0.26750 
38 0197797 0.235136 0.260365
40 0.194296 0.23069 0.25528 
42 0.195178 0.230694 0.254692
44 0.180863 0.215563 0.239009
46 0.179776 0.213714 0.236644
48 0.175991 0.209214 0.231662
50 0.176895 0.209447 0.231441
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      The power estimate of the test statistic K̂ is useful in clarifying how much the test 
can detect the departure from exponentiality towards the class UBAC. The higher value 
of the power estimate indicates that the test statistic is more able to detect such a 

departure. The power of the test statistics  K̂  is considered for 5% percentile in Table (2) 
for three alternatives. These alternatives are: 

1. Linear failure rate: 
)

2

1
( 2

)(
xx

exF





  , 0x , 0  

2. Makeham: )1()(
xexxexF

 
 , 0x , 0  

3. Weibull: 



xexF )( 0x , 0  

 
             For appropriate values of , these distributions can be reduced to the 

exponential distribution. The power estimate of the test statistic K̂ , given in Table (2) 
shows the chance of detecting departure from exponentiality towards the UBAC 
property as   increases, or the sample size n increases for the linear failure rate, 
Makeham, and Weibull distribution. 
 
 

Table (2): Power estimates for K̂  
Distribution   n=10 n=20 n=30 
Linear failure rate 2 0.995 0.999 0.999 

3 0.998 0.999 1 
4 0.999 1 1 

Makeham 2 0.993 0.999 0.999 
3 0.995 0.999 0.999 
4 0.999 0.999 1 

Weibull 2 0.999 1 1 
 

 
3. Asymptotic relative efficiency: 

      In this section we compare the power of the test statistic K̂  using the concept of 
Pitman's asymptotic efficiency (PARE). To do this we need to evaluate the Pitman's 

asymptotic efficiency (PAE) of our test K̂  and compare the PAR of other test to get 

PARE. Let 
n

F  be a sequence of alternative distributions, where nkn /0   , k is 

positive number, and 0  corresponds to the exponential distribution. PAE is given by 

1
01,1, )(|)()(

0lim 




 
  n

n
nF TE

d

d
Te  where 2

0
2
0 V  is the null asymptotic 

variance. 
 

       The PARE of 1,nT  with respect to another test 2,nT  is then given by 

).(/)( 2,1, nFnF TeTe


 the efficiencies of  K̂  are calculated for the following alternatives: 
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linear failure rate, Makeham, and weibull distributions. Direct calculation of asymptotic 

efficiencies of the test  nU   and K̂  for NBUE, Kanjo [8] and UBAC classes respectively 

are summarized in Table (3). In Table (4) we give efficiencies of K̂  with respect to nU . 

These calculations clearly indicate that the test proposed in this paper is well comparable 
with other test widely used in practice, and in some cases is even better. 
 

 

Table (3):  PAR of K̂ and nU  

Distribution 
K̂  nU  

Linear failure rate 0.565 0.433 
Makeham 0.245 0.144 
Weibull 0.424 0.132 
 

 

Table (4):  PARE of K̂ with respect to nU  

Relative efficiency Linear failure rate Makeham Weibull 
).(/)( 2,1, nFnF TeTe


 1.305 1.701 3.121 

 
 
 
4. Testing against UBAC class for right censored data. 
 
         In this section, a test statistic proposed to test 0H  versus 1H  with randomly right 

censored samples. In the censored model, instead of dealing with nXXX ,...,, 21 , we 

observe the pair ( iiZ , ) , i=1,2,…,n, where ),min( iii YXZ   and 1i if ii XZ  , 

0i if ii YZ  , where nXXX ,...,, 21  denote their true life time from a distribution F 

and nYYY ,...,, 21  be i.i.d. according to distribution G. Also X's and Y's are independent. 

Let )()2()1()0( ...0 nZZZZ   denote the order Z's and )(i  is the i  corresponding 

to )(iZ , respectively. Using the Kaplan Meier estimator in the case of censored data 

( iiZ , ), i=1… n, the proposed test statistic for right censored data is given by 
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Where:  







tx

tx

nnn dzzFdzzFtx
0

)(ˆˆ)(ˆ)(ˆ   

                       







l

k

k

m
kkm ZZC m

1

1

1
)1()( )(ˆ   

Where, jil   if )()()( nji ZZZ  , l= n if )()()( nji ZZZ   
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Cm  and ],0[ )(mZt  . 

       To illustrate the test, we have simulated the upper percentile points for the 

significance level 01.0 , 0.02, and0.05. The calculation of the test C
K̂  is based on 

10000 simulated samples from the standard exponential distribution. Table (5), gives the 

critical values of the test statistic C
K̂ . Figure (2) shows the critical values of the test 

statistic C
K̂  are decreasing as the sample size increasing as follow: 
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Table (5): Critical value of C
K̂  

 
n 95% 98% 99% 
1 0.862262 1.025020 1.13499 
3 0.704056 0.836947 0.926738 
4 0.609749 0.724836 0.802598 
5 0.545394 0.648331 0.717883 
6 0.497891 0.591860 0.655352 
7 0.460975 0.547973 0.606755 
8 0.431221 0.512600 0.567586 
9 0.406579 0.483304 0.535145 
10 0.385736 0.458524 0.507704 
11 0.367808 0.437209 0.484101 
12 0.352176 0.418622 0.463518 
13 0.338390 0.402229 0.445363 
14 0.326116 0.387633 0.429198 
15 0.315099 0.374530 0.414686 
16 0.305144 0.362687 0.401568 
17 0.296095 0.351921 0.389640 
18 0.287833 0.342085 0.378742 
19 0.280262 0.33068 0.368747 
20 0.273316 0.324785 0.359561 
51 0.175919 0.208150 0.229928 
61 0.157073 0.186544 0.206457 
71 0.145133 0.172450 0.190907 
81 0.135724 0.161299 0.178580 
91 0.127978 0.152107 0.168411 
101 0.121439 0.144342 0.159817 
 

5. Application: 

5.1 Application for complete data: 
 
Example (1): The following data represent 39 liver cancers patients taken from El Minia 
Cancer Center Ministry of Health Egypt Attia et al [3] the ordered life times (in days) are:  

10; 14; 14; 14; 14; 14; 15; 17; 18; 20; 20; 20; 20; 20; 23; 23; 24; 26; 30; 30; 
31; 40; 49; 51; 52; 60; 61; 67; 71; 74; 75; 87; 96; 105; 107; 107; 107; 116; 150: 

It was found that the test statistic for the data set, K̂ =235.999, which it exceeds the 
critical value of table 3. Then we reject the null hypothesis of exponentiality. 
 
5.2  Application for censored data: 
 
Example (2): The following data represent 39 liver cancers patients taken from El Minia 
Cancer Center Ministry of Health Egypt Attia et al [3] the ordered life times (in days) are: 
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(i) Non-censored data 
10; 14; 14; 14; 14; 14; 15; 17; 18; 20; 20; 20; 20; 20; 23; 23; 24; 26; 30; 30; 
31; 40; 49; 51; 52; 60; 61; 67; 71; 74; 75; 87; 96; 105; 107; 107; 107; 116; 150. 
 
(ii) Censored data 
30; 30; 30; 30; 30; 60; 150; 150; 150; 150; 150; 185: 

It was found that the test statistic for the data set, C
K̂ =0.170761, which it decreases the 

critical value of table 3. Then we accept the null hypothesis of exponentiality. 
 
Acknowledgement: The author thanks very much the referee for his (her) comments and 
corrections. 
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