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1. Introduction

The scheme of progressive Type-II censoring is of importance in reliability and life-testing experi-
ments. It allows the experimenter to remove units from a life test at various stages during the exper-
iment which may lead to a saving of costs and of time. (see Cohen, 1963 and Sen, 1986). In such a
random experiment, a group of n independent and identical experimental units is put on a life test
at time zero with continuous, identically distributed failure times X1,X2, ...,Xn. After the jth failure,
a prespecified number R j ≥ 0 of the n− j −∑ j−1

i=0 Ri remaining (or surviving) units are randomly
withdrawn from the experiment, 1 ≤ j ≤ m, m ≤ n, R0 = 0. Removed units thus become right cen-
sored at the time of failure of other units. This progressive censoring leads to m ordered observed
failure times denoted by X (R1,R2,...,Rm)

1:m:n ,X (R1,R2,...,Rm)
2:m:n , ...,X (R1,R2,...,Rm)

m:m:n , and these are called progres-
sively Type-II right censored order statistics of size m from a sample of size n with progressive
censoring scheme (R1,R2, . . . ,Rm). Thus, in this type of sampling, m failures are observed, ∑m

j=1 R j

units are progressively censored and n = m+∑m
j=1 R j denotes the number of units in the life test.

The withdrawal of units may be seen as a model describing drop-outs of units due to failures which
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have causes other than the specific one under study. In this sense, progressive censoring schemes
are applied in clinical trials as well. Here, the drop-outs of patients may be caused by migration,
lack of interest or by personal or ethical decisions, and they are regarded as random withdrawals.
For a detailed discussion of progressive censoring and the relevant developments in this area, one
may refer to Sen (1986), Balakrishnan and Aggarwala (2000) and Aggarwala (2001).

The situation with no censoring corresponds to the special case with m = n and R1 = R2 = ...=

Rm = 0, whereas the situation with ordinary Type-II right censoring at a given order statistic corre-
sponds to the special case with m < n, R1 = R2 = ...= Rm−1 = 0 and Rm = n−m.

If the failure times of the n items originally on test are from a doubly truncated continuous popu-
lation with c.d.f. F(x) and p.d.f. f (x), then the joint p.d.f. of X (R1,R2,...,Rm)

1:m:n ,X (R1,R2,...,Rm)
2:m:n ,

. . . ,X (R1,R2,...,Rm)
m:m:n is given by (cf. Balakrishnan and Sandhu (1995) and Saran and Pushkarna (2001))

f1,2,...,m:m:n(x1,x2, . . . ,xm) = A(n,m−1)
m

∏
i=1

f (xi)[1−F(xi)]
Ri , Q1 ≤ x1 < x2 < · · ·< xm ≤ P1,

(1.1)
where A(n,m−1) = n(n−R1 −1)(n−R1 −R2 −2)...(n−R1 −R2 − ...−Rm−1 −m+1).
Here, note that all the factors in A(n,m−1) are positive integers. Also it may be observed that the
different factors in A(n,m−1) represent the number of units still on test immediately preceding the
first, second, ..., mth observed failures, respectively. Similarly, for convenience in notation, let us
define

A(p,q) = p(p−R1 −1)(p−R1 −R2 −2) . . .(p−R1 −R2 −·· ·−Rq −q), (1.2)

for q = 0,1, . . . , p−1, with all the factors being positive integers.
Also the quantities Q1 and P1 in (1.1) are the points of truncation of the p.d.f. g(x) of the untruncated
population given by

∫ Q1

−∞
g(x)dx = Q

and ∫ ∞

P1

g(x)dx = 1−P,

i.e., Q and 1−P (Q < P) are, respectively, the proportions of truncation on the left and right of the
p.d.f. g(x), where

f (x) =
g(x)

P−Q
, Q1 ≤ x ≤ P1.

The quantities Q and P are assumed to be known and Q1 and P1 are functions of Q and P.
By assuming the underlying distribution of failure times as exponential, half logistic, right trun-

cated exponential, doubly truncated exponential, doubly truncated Pareto, doubly truncated power
function and doubly truncated Burr, and utilizing the corresponding characterizing differential equa-
tion, several authors, viz. Aggarwala and Balakrishnan (1996), Saran and Pande (2012), Balakrish-
nan and Aggarwala (2000) and Saran and Pushkarna (2001) have derived recurrence relations for
single and product moments of the corresponding progressively Type-II right censored order statis-
tics. These recurrence relations will allow one for the recursive computation of these moments for
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all sample sizes and all possible censoring schemes.
In this paper, we derive some general recurrence relations satisfied by the single and product

moments of progressively Type-II right censored order statistics from a general class of doubly trun-
cated distributions with p.d.f. f (x) and c.d.f. F(x) satisfying the characterizing differential equation:( p

∑
i=0

aixi
)

f (x) =
( q

∑
j=0

b jx j
)(

c+{1−F(x)}
)
, (1.3)

or, equivalently, ( p

∑
i=0

aixi
)

f (x) =
( q

∑
j=0

b jx j
)(

d −F(x)
)
, (1.4)

where d = 1+ c and Q1 ≤ x ≤ P1. Here p and q are integers and a′s,b′s and c are arbitrary real
constants.
Further , for the special case R1 = R2 = . . .= Rm = 0, the derived results would reduce to the general
recurrence relations for the usual order statistics from the general class of doubly truncated distri-
butions satisfying the characterizing differential equation (1.3) or (1.4).

It is worth mentioning here that several doubly truncated distributions, for example, doubly trun-
cated Lomax, Weibull, Weibull-gamma, Weibull-exponential, log logistic, exponential, generalized
exponential, Rayleigh, generalized Rayleigh, generalized Pareto, linear exponential and Burr sat-
isfy the characterizing differential equation defined in (1.3) or (1.4) with appropriate choices for the
p,q,a′s,b′s and c as demonstrated in Remarks 2.2 and 2.3 in Section 2. Therefore, the recurrence
relations for single and product moments of progressively Type-II right censored order statistics as
well as those for the usual order statistics from the above mentioned doubly truncated distributions
can easily be deduced from the results derived in Sections 2 and 3, as special cases.

Thus, the results presented in this paper will generalize and unify the earlier results in this direc-
tion for the moments of the usual order statistics as well as those for the progressively Type-II
right censored order statistics due to several authors like Joshi (1978, 1982), Balakrishnan (1985),
Balakrishnan and Joshi (1981, 1982, 1984), Balakrishnan and Malik (1986, 1987), Khan and Khan
(1987), Saran and Pushkarna (1999 a, b, c; 2000 a, b; 2001; 2010), Aggarwala and Balakrishnan
(1996), Saran and Pande (2012), Balakrishnan and Aggarwala (2000, Sections 4.4 and 4.5), etc.

2. Recurrence relations for single moments

In this section, we shall establish several recurrence relations for single moments of progressively
Type-II right censored order statistics from a doubly truncated continuous distribution satisfying the
characterizing differential equation (1.3) or, equivalently, (1.4).

Using (1.1), we have

µ(R1,R2,...,Rm)
(k)

r:m:n = E
[
X (R1,R2,...,Rm)

r:m:n

]k

= A(n,m−1)
∫

Q1≤x1<

∫
· · ·

∫
x2<...<xm≤P1

xk
r

m

∏
t=1

f (xt)[1−F(xt)]
Rt dxt . (2.1)
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Theorem 2.1. For i ≥ 0,

p

∑
t=0

at µ
(0)
1:1:1

(i+t)
=

q

∑
j=0

b j

i+ j+1
(cP1

i+ j+1 −dQ1
i+ j+1 +µ(0)

1:1:1
(i+ j+1)

). (2.2)

Proof. From (2.1), for n = m = r = 1, we obtain

p

∑
t=0

at µ
(0)
1:1:1

(i+t)
=

∫ P1

Q1

p

∑
t=0

atxi+t
1 f (x1)dx1.

Making use of (1.4), we get

p

∑
t=0

at µ
(0)
1:1:1

(i+t)
= d

q

∑
j=0

b j

∫ P1

Q1

xi+ j
1 dx1 −

q

∑
j=0

b j

∫ P1

Q1

xi+ j
1 F(x1)dx1

= d
q

∑
j=0

b j

i+ j+1
(Pi+ j+1

1 −Qi+ j+1
1 )−

q

∑
j=0

b j

i+ j+1
(Pi+ j+1

1 −µ(0)
1:1:1

(i+ j+1)
),

where the last term on the right hand side has been obtained by integration by parts. This on simpli-
fication leads to (2.2).

Theorem 2.2. For n ≥ 2 and i ≥ 0,

p

∑
t=0

at µ
(n−1)
1:1:n

(i+t)
= n

q

∑
j=0

b j

i+ j+1

[
cµ(n−2)

1:1:n−1
(i+ j+1)

+ µ(n−1)
1:1:n

(i+ j+1)
−dQ1

i+ j+1
]
. (2.3)

Proof. Proceeding in a similar manner as in Theorem 2.1, one can easily establish the relation in
(2.3).

Theorem 2.3. For 2 ≤ m ≤ n−1, i ≥ 0 and R1 ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
1:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[ nc
(n−1)

{
(n−R1 −1)µ(R1+R2,R3,...,Rm)

1:m−1:n−1
(i+ j+1)

+R1µ(R1−1,R2,...,Rm)
1:m:n−1

(i+ j+1)}
−ndQi+ j+1

1

+(n−R1 −1)µ(R1+R2+1,R3,...,Rm)
1:m−1:n

(i+ j+1)
+(R1 +1)µ(R1,R2,...,Rm)

1:m:n
(i+ j+1)]

, (2.4)

and, for 2 ≤ m ≤ n−1, i ≥ 0 and R1 = 0,

p

∑
t=0

at µ
(0,R2,...,Rm)
1:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[
nc µ(R2,R3,...,Rm)

1:m−1:n−1
(i+ j+1)

−ndQi+ j+1
1

+(n−1)µ(R2+1,R3,...,Rm)
1:m−1:n

(i+ j+1)
+µ(0,R2,...,Rm)

1:m:n
(i+ j+1)]

. (2.5)

Proof. The relations in (2.4) and (2.5) may be proved by following exactly the same steps as those
used in proving Theorem 2.4, which is presented next.
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Theorem 2.4. For 2 ≤ r ≤ m−1, m ≤ n−1, i ≥ 0 and Rr ≥ 1,
p

∑
t=0

at µ
(R1,R2,...,Rm)
r:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[
c
{ A(n,r)

A(n−1,r−1)
µ(R1,R2,...,Rr−1,Rr+Rr+1,Rr+2,...,Rm)

r:m−1:n−1
(i+ j+1)

− A(n,r−1)
A(n−1,r−2)

µ(R1,R2,...,Rr−2,Rr−1+Rr,Rr+1,...,Rm)
r−1:m−1:n−1

(i+ j+1)

+
A(n,r−1)

A(n−1,r−1)
Rr µ(R1,R2,...,Rr−1,Rr−1,Rr+1,...,Rm)

r:m:n−1
(i+ j+1)}

+(n−Sr − r)µ(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r:m−1:n

(i+ j+1)

−(n−Sr−1 − r+1)µ(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1:m−1:n

(i+ j+1)

+(Rr +1)µ(R1,R2,...,Rm)
r:m:n

(i+ j+1)]
,

(2.6)

and, for 2 ≤ r ≤ m−1, m ≤ n, i ≥ 0 and Rr = 0,
p

∑
t=0

at µ
(R1,R2,...,Rr−1,0,Rr+1,...,Rm)
r:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[
c
{ A(n,r)

A(n−1,r−1)
µ(R1,R2,...,Rr−1,Rr+1,...,Rm)

r:m−1:n−1
(i+ j+1)

− A(n,r−1)
A(n−1,r−2)

µ(R1,R2,...,Rr−1,Rr+1,...,Rm)
r−1:m−1:n−1

(i+ j+1)}
+(n−Sr−1 − r)µ(R1,R2,...,Rr−1,Rr+1+1,Rr+2,...,Rm)

r:m−1:n
(i+ j+1)

−(n−Sr−1 − r+1)µ(R1,R2,...,Rr−2,Rr−1+1,Rr+1,...,Rm)
r−1:m−1:n

(i+ j+1)

+µ(R1,R2,...,Rr−1,0,Rr+1,...,Rm)
r:m:n

(i+ j+1)]
,

(2.7)

where Si = R1 +R2 + . . .+Ri, 1 ≤ i ≤ m.

Proof. In order to establish (2.6), we note on using (2.1) that
p

∑
t=0

at µ
(R1,R2,...,Rm)
r:m:n

(i+t)
= A(n,m−1)

∫
Q1≤x1<...

∫
· · ·

∫
<xr−1<xr+1<...<xm≤P1

I(xr−1,xr+1)

.
m

∏
u=1,u ̸=r

[1−F(xu)]
Ru f (xu)dxu, (2.8)

where

I(xr−1,xr+1) =

xr+1∫
xr−1

p

∑
t=0

at xi+t
r [1−F(xr)]

Rr f (xr)dxr. (2.9)

Making use of the relation in (1.3) and splitting the integral accordingly into two, we have

I(xr−1,xr+1) = c
q

∑
j=0

b j I0(xr−1,xr+1)+
q

∑
j=0

b j I1(xr−1,xr+1), (2.10)
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where

Ia(xr−1,xr+1) =

xr+1∫
xr−1

xi+ j
r [1−F(xr)]

Rr+adxr, a = 0,1.

Integration by parts yields,

Ia(xr−1,xr+1) =
1

i+ j+1

[
xi+ j+1

r+1 [1−F(xr+1)]
Rr+a − xi+ j+1

r−1 [1−F(xr−1)]
Rr+a

+(Rr +a)

xr+1∫
xr−1

xi+ j+1
r [1−F(xr)]

Rr+a−1 f (xr)dxr

]
. (2.11)

Upon substituting for I0(xr−1,xr+1) and I1(xr−1,xr+1) from (2.11) in (2.10) and then substituting
the resultant expression for I(xr−1,xr+1) in (2.8) and simplifying, it leads to (2.6).

To derive (2.7), we proceed in exactly the same way as in the proof of (2.6) given above.
Other things remain the same as in the proof of (2.6), the only change will be in the value of
Ia(xr−1,xr+1), a = 0,1, which for the case Rr = 0 comes out to be

I0(xr−1,xr+1) =
1

i+ j+1

[
xi+ j+1

r+1 − xi+ j+1
r−1

]
(2.12)

and

I1(xr−1,xr+1) =
1

i+ j+1

[
xi+ j+1

r+1 (1−F(xr+1))− xi+ j+1
r−1 (1−F(xr−1))+

xr+1∫
xr−1

xi+ j+1
r f (xr)dxr

]
.

(2.13)

Thus, in the case Rr = 0, (2.7) follows from (2.8), (2.10), (2.12) and (2.13).

Likewise, the recurrence relations given in the following theorem can also be established.

Theorem 2.5. For 2 ≤ m ≤ n−1, i ≥ 0 and Rm ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
m:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[
c
{ A(n,m−1)

A(n−1,m−1)
Rmµ(R1,R2,...,Rm−1,Rm−1)

m:m:n−1
(i+ j+1)

− A(n,m−1)
A(n−1,m−2)

µ(R1,R2,...,Rm−2,Rm−1+Rm)
m−1:m−1:n−1

(i+ j+1)}
−(n−Sm−1 −m+1)µ(R1,R2,...,Rm−2,Rm−1+Rm+1)

m−1:m−1:n
(i+ j+1)

+(Rm +1)µ(R1,R2,...,Rm)
m:m:n

(i+ j+1)]
, (2.14)
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and, for 2 ≤ m ≤ n, i ≥ 0 and Rm = 0,
p

∑
t=0

at µ
(R1,R2,...,Rm−1,0)
m:m:n

(i+t)
=

q

∑
j=0

b j

i+ j+1

[
c
{ A(n,m−1)

A(n−1,m−2)
Pi+ j+1

1

− A(n,m−1)
A(n−1,m−2)

µ(R1,R2,...,Rm−1)
m−1:m−1:n−1

(i+ j+1)}
−(n−Sm−1 −m+1)µ(R1,R2,...,Rm−2,Rm−1+1)

m−1:m−1:n
(i+ j+1)

+µ(R1,R2,...,Rm−1,0)
m:m:n

(i+ j+1)]
. (2.15)

Remark 2.1. It may be mentioned that if R1 = R2 = . . . = Rk−1 = 0, i.e., there is no censoring
before the time of the kth failure, then the first k progressively Type-II right censored order statistics
are simply the first k usual order statistics. Thus, for the special case R1 = R2 = . . . = Rm = 0,
so that m = n in which case the progressively censored order statistics become the usual order
statistics X1:n,X2:n, ...,Xn:n, the recurrence relations established in Section 2 would reduce to the
corresponding recurrence relations for the single moments of usual order statistics from the general
class of doubly truncated distributions satisfying the characterizing differential equation (1.3) or
(1.4), thus verifying the results of Saran and Pushkarna (2010).

Remark 2.2. Setting

ai =


1 ; when i = 0

0 ; when 1 ≤ i ≤ p−1

θ ; when i = p,

b j =

{
ν pθ ; when j = p−1

0 ; when j ̸= p−1,

and

c = (1−P)/(P−Q) = P2, say (i.e., d = 1+P2 = Q2, say), (2.16)

we observe that (1.4), for q ≥ p−1, reduces to

(1+θxp) f (x) = υ pθxp−1
(

Q2 −F(x)
)
, (2.17)

which is the characterizing differential equation for the doubly truncated Burr type XII distribution
(cf. Khan and Khan (1987) and Saran and Pushkarna (2001)) with p.d.f. in the form

f (x) =
υ pθxp−1(1+θxp)−(ν+1)

(P−Q)
, Q1 ≤ x ≤ P1,υ > 0, p > 0,θ > 0. (2.18)

For the above values of ai,b j,c and d, as given in (2.16), the recurrence relations in Section 2
will reduce to and verify the corresponding recurrence relations established by Saran and Pushkarna
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(2001) for the progressively Type-II right censored order statistics from doubly truncated Burr type
XII distribution.

It may be mentioned that one can derive similar recurrence relations for doubly truncated Lomax,
Weibull, Weibull-gamma, Weibull-exponential, log logistic, exponential, generalized exponential,
Rayleigh, generalized Rayleigh and generalized Pareto distributions, since these distributions are
some versions of Burr type XII distribution by taking different values of the parameters involved as
discussed in Tadikamalla (1980) and Saran and Pushkarna (2001).

Remark 2.3. Setting

ai =

{
1 , when i = 0

0 , when i ̸= 0,

b j =


λ , when j = 0

ν , when j = 1

0 , when j ≥ 2,

and

c = (1−P)/(P−Q) = P2 ,say(i.e.,d = 1+P2 = Q2, say), (2.19)

we observe that (1.3), or equivalently (1.4), reduces to the well-known characterizing differential
equation for the doubly truncated linear exponential distribution (cf. Saran and Pushkarna (1999b)
and also the recurrence relations given in Section 2 reduce to the corresponding results for progres-
sively Type-II right censored order statistics from doubly truncated linear exponential distribution.

3. Recurrence relations for product moments

Using (1.1) we can write the product moments of the progressively Type-II right censored order
statistics as follows:

µ(R1,R2,...,Rm)
(k1 ,k2)

r,s:m:n = E
[{

X (R1,R2,...,Rm)
r:m:n

}k1
{

X (R1,R2,...,Rm)
s:m:n

}k2
]

= A(n,m−1)
∫

Q1≤x1<

∫
· · ·

∫
x2<...<xm≤P1

xk1
r xk2

s

m

∏
t=1

f (xt)[1−F(xt)]
Rt dxt , (3.1)

where 1 ≤ r < s ≤ m ≤ n and k1,k2 ≥ 0. Also

µ(R1,R2,...,Rm)
(k1 ,k2)

r,r:m:n = E
[{

X (R1,R2,...,Rm)
r:m:n

}k1
{

X (R1,R2,...,Rm)
r:m:n

}k2
]

= µ(R1,R2,...,Rm)
(k1+k2)

r:m:n , (3.2)

as defined in (2.1), where 1 ≤ r ≤ m ≤ n and k1,k2 ≥ 0.
In this section, we shall derive various recurrence relations for the product moments of progres-

sively Type-II right censored order statistics from a doubly truncated continuous distribution with
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p.d.f. f(x) and c.d.f. F(x) satisfying the characterizing differential equation (1.3) or (1.4).

Theorem 3.1. For 2 ≤ s ≤ m ≤ n−R1, i,k ≥ 0 and R1 ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
1,s:m:n

(i+t,k)
=

q

∑
j=0

b j

i+ j+1

[ nc
n−1

{
(n−R1 −1)µ(R1+R2,R3,...,Rm)

1,s−1:m−1:n−1
(i+ j+1,k)

+R1µ(R1−1,R2,R3,...,Rm)
1,s:m:n−1

(i+ j+1,k)}
−ndQi+ j+1

1 µ(R2,R3,...,Rm)
(k)

s−1:m−1:n−R1−1

+(n−R1 −1)µ(R1+R2+1,R3,R4,...,Rm)
1,s−1:m−1:n

(i+ j+1,k)
+(R1 +1)µ(R1,R2,...,Rm)

1,s:m:n
(i+ j+1,k)]

, (3.3)

and, for 2 ≤ s ≤ m ≤ n, i,k ≥ 0 and R1 = 0,

p

∑
t=0

at µ
(0,R2,...,Rm)
1,s:m:n

(i+t,k)
=

q

∑
j=0

b j

i+ j+1

[
nc µ(R2,R3,...,Rm)

1,s−1:m−1:n−1
(i+ j+1,k)

−ndQi+ j+1
1 µ(R2,R3,...,Rm)

(k)

s−1:m−1:n−1

+(n−1)µ(R2+1,R3,...,Rm)
1,s−1:m−1:n

(i+ j+1,k)
+µ(0,R2,R3,...,Rm)

1,s:m:n
(i+ j+1,k)]

. (3.4)

Proof. The relations in (3.3) and (3.4) may be proved by following exactly the same steps as those
used in proving Theorem 3.2, which is presented next to Remark 3.1.

Remark 3.1. It may be remarked that for the case s = 2, Theorem 3.1 remains valid provided we

replace µ(R1,R2,...,Rm)
1,1:m:n

(i,k)
by µ(R1,R2,...,Rm)

1:m:n
(i+k)

, as mentioned in (3.2).

Theorem 3.2. For 2 ≤ r < s ≤ m < n, i,k ≥ 0 and Rr ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
r,s:m:n

(i+t,k)
=

q

∑
j=0

b j

i+ j+1

[
c
{ A(n,r)

A(n−1,r−1)
µ(R1,R2,...,Rr−1,Rr+Rr+1,Rr+2,...,Rm)

r,s−1:m−1:n−1
(i+ j+1,k)

− A(n,r−1)
A(n−1,r−2)

µ(R1,R2,...,Rr−2,Rr−1+Rr,Rr+1,...,Rm)
r−1,s−1:m−1:n−1

(i+ j+1,k)

+Rr
A(n,r−1)

A(n−1,r−1)
µ(R1,R2,...,Rr−1,Rr−1,Rr+1,...,Rm)

r,s:m:n−1
(i+ j+1,k)}

+(n−Sr − r)µ(R1,R2,...,Rr−1,Rr+Rr+1+1,Rr+2,...,Rm)
r,s−1:m−1:n

(i+ j+1,k)

−(n−Sr−1 − r+1)µ(R1,R2,...,Rr−2,Rr−1+Rr+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(i+ j+1,k)

+(Rr +1)µ(R1,R2,...,Rm)
r,s:m:n

(i+ j+1,k)]
.

(3.5)

Proof. From (3.1), let us consider for 2 ≤ r < s ≤ m < n, i,k ≥ 0 and Rr ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
r,s:m:n

(i+t,k)
= A(n,m−1)

∫
Q1≤x1<...

∫
· · ·

∫
<xr−1<xr+1<...<xm≤P1

xk
s I(xr−1,xr+1)

.
m

∏
u=1,u̸=r

f (xu)[1−F(xu)]
Rudxu, (3.6)
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where I(xr−1,xr+1) is the same as given in equation (2.9), or equivalently, in equations (2.10) and
(2.11). Now upon using (2.11) in (2.10) and then putting the value of I(xr−1,xr+1), so obtained, into
the equation (3.6) and then simplifying, it leads to (3.5).

Theorem 3.3. For 2 ≤ r < s ≤ m < n, i,k ≥ 0 and Rr = 0,

p

∑
t=0

at µ
(R1,R2,...,Rr−1,0,Rr+1,...,Rm)
r,s:m:n

(i+t,k)

=
q

∑
j=0

b j

i+ j+1

[
c
{ A(n,r)

A(n−1,r−1)
µ(R1,R2,...,Rr−1,Rr+1,...,Rm)

r,s−1:m−1:n−1
(i+ j+1,k)

− A(n,r−1)
A(n−1,r−2)

µ(R1,R2,...,Rr−1,Rr+1,...,Rm)
r−1,s−1:m−1:n−1

(i+ j+1,k)}
+(n−Sr−1 − r)µ(R1,R2,...,Rr−1,Rr+1+1,Rr+2,...,Rm)

r,s−1:m−1:n
(i+ j+1,k)

−(n−Sr−1 − r+1)µ(R1,R2,...,Rr−2,Rr−1+1,Rr+1,...,Rm)
r−1,s−1:m−1:n

(i+ j+1,k)

+µ(R1,R2,...,Rr−1,0,Rr+1,...,Rm)
r,s:m:n

(i+ j+1,k)]
. (3.7)

Proof. The relation in (3.7) may be proved by following the similar steps as those used in proving
(3.5).

Remark 3.2. It may be noted that Theorems 3.2 and 3.3 hold even for s = r+ 1 without altering

the proof, provided we realize that µ(R1,R2,...,Rm)
r,r:m:n

(i,k)
= µ(R1,R2,...,Rm)

r:m:n
(i+k)

, as mentioned in (3.2).

Likewise, the recurrence relations given in the following theorems can also be established.

Theorem 3.4. For 1 ≤ r < s < m < n, i,k ≥ 0 and Rs ≥ 1,

p

∑
t=0

at µ
(R1,R2,...,Rm)
r,s:m:n

(i,k+t)
=

q

∑
j=0

b j

j+ k+1

[
c
{ A(n,s)

A(n−1,s−1)
µ(R1,R2,...,Rs−1,Rs+Rs+1,Rs+2,...,Rm)

r,s:m−1:n−1
(i, j+k+1)

− A(n,s−1)
A(n−1,s−2)

µ(R1,R2,...,Rs−2,Rs−1+Rs,Rs+1,...,Rm)
r,s−1:m−1:n−1

(i, j+k+1)

+Rs
A(n,s−1)

A(n−1,s−1)
µ(R1,R2,...,Rs−1,Rs−1,Rs+1,...,Rm)

r,s:m:n−1
(i, j+k+1)}

+(n−Ss − s)µ(R1,R2,...,Rs−1,Rs+Rs+1+1,Rs+2,...,Rm)
r,s:m−1:n

(i, j+k+1)

−(n−Ss−1 − s+1)µ(R1,R2,...,Rs−2,Rs−1+Rs+1,Rs+1,...,Rm)
r,s−1:m−1:n

(i, j+k+1)

+(Rs +1)µ(R1,R2,...,Rm)
r,s:m:n

(i, j+k+1)]
,

(3.8)
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and, for 1 ≤ r < s < m ≤ n, i,k ≥ 0 and Rs = 0,
p

∑
t=0

at µ
(R1,R2,...,Rs−1,0,Rs+1,...,Rm)
r,s:m:n

(i, j+k+1)

=
q

∑
j=0

b j

j+ k+1

[
c
{ A(n,s)

A(n−1,s−1)
µ(R1,R2,...,Rs−1,Rs+1,Rs+2,...,Rm)

r,s:m−1:n−1
(i, j+k+1)

− A(n,s−1)
A(n−1,s−2)

µ(R1,R2,...,Rs−2,Rs−1,Rs+1,...,Rm)
r,s−1:m−1:n−1

(i, j+k+1)}
+(n−Ss − s)µ(R1,R2,...,Rs−1,Rs+1+1,Rs+2,...,Rm)

r,s:m−1:n
(i, j+k+1)

−(n−Ss−1 − s+1)µ(R1,R2,...,Rs−2,Rs−1+1,Rs+1,...,Rm)
r,s−1:m−1:n

(i, j+k+1)

+µ(R1,R2,...,Rs−1,0,Rs+1,...,Rm)
r,s:m:n

(i, j+k+1)]
. (3.9)

Theorem 3.5. For 1 ≤ r < m < n, i,k ≥ 0 and Rm ≥ 1,
p

∑
t=0

at µ
(R1,R2,...,Rm)
r,m:m:n

(i,k+t)
=

q

∑
j=0

b j

j+ k+1

[
c
{ A(n,m−1)

A(n−1,m−1)
Rm µ(R1,R2,...,Rm−1,Rm−1)

r,m:m:n−1
(i, j+k+1)

− A(n,m−1)
A(n−1,m−2)

µ(R1,R2,...,Rm−2,Rm−1+Rm)
r,m−1:m−1:n−1

(i, j+k+1)}
−(n−Sm−1 −m+1)µ(R1,R2,...,Rm−2,Rm−1+Rm+1)

r,m−1:m−1:n
(i, j+k+1)

+(Rm +1)µ(R1,R2,...,Rm)
r,m:m:n

(i, j+k+1)]
,

(3.10)

and, for 1 ≤ r < m < n, i,k ≥ 0 and Rm = 0,
p

∑
t=0

at µ
(R1,R2,...,Rm−1,0)
r,m:m:n

(i,k+t)
=

q

∑
j=0

b j

j+ k+1

[
c

A(n,m−1)
A(n−1,m−2)

{
P j+k+1

1 µ(R1,R2,...,Rm−1)
r:m−1:n−1

(i)

−µ(R1,R2,...,Rm−1)
r,m−1:m−1:n−1

(i, j+k+1)}
−(n−Sm−1 −m+1)µ(R1,R2,...,Rm−2,Rm−1+1)

r,m−1:m−1:n
(i, j+k+1)

+ µ(R1,R2,...,Rm−1,0)
r,m:m:n

(i, j+k+1)]
. (3.11)

Remark 3.3. For the special case R1 = R2 = . . . = Rm = 0, the recurrence relations established
in Section 3 reduce to the corresponding recurrence relations for product moments of usual order
statistics from the general class of doubly truncated distributions (1.3), thus verifying the results of
Saran and Pushkarna (2010).

Remark 3.4. For special values of ai,b j,c and d, as given in (2.16), the recurrence relations in
Section 3 will reduce to the corresponding recurrence relations for the product moments of progres-
sively Type-II right censored order statistics from doubly truncated Burr type XII distribution, thus
verifying the results established by Saran and Pushkarna (2001).

As pointed out earlier in Remarks 2.2 and 2.3, the recurrence relations for product
moments of progressively Type-II right censored order statistics from doubly truncated Lomax,
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Weibull,Weibull-gamma, Weibull-exponential, log logistic, exponential, generalized exponential,
Rayleigh, generalized Rayleigh, generalized Pareto and linear exponential distributions can be eas-
ily deduced from the results of Section 3 as special cases.
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