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This article deals with the problem of estimating the parameters of the two-parameter exponential lifetime 

distribution based on Type-II hybrid censored samples from the Bayesian viewpoint. The scale and location 

parameters are assumed to have exponential and uniform priors respectively. Bayes point estimates and credible 

intervals for the unknown parameters are derived under the assumption of the squared error loss function. A 

lifetime real dataset is analyzed to motivate and to show the performance of the proposed Bayes estimates based 

on Type-II hybrid censoring scheme. Various Simulation studies are also provided in this paper to compare the 

proposed Bayes estimates with the existing classical estimates. 

 

Keywords: Bayes Estimation; Credible Interval; Exponential Distribution; Hybrid Censored Samples; 

Kolmogorov-Smirnov Test; Squared Error Loss Function.   

 

2000 Mathematics Subject Classification: 62F15, 62N01. 

 

1. Introduction 

Let nXXX ,...,, 21  be a random sample of size n  from a two-parameter exponential distribution 

),( E  with scale parameter   (i.e. with mean lifetime of 1 ) and location parameter (guarantee 

lifetime)  . The parameters   and   are independent. The probability density function (p.d.f) of X  

at x  is: 

    xexf x     0,0;),|( )(
                                      (1.1) 

 This distribution plays an important role in survival and reliability analysis (see [9] for 

instance). If the lifetime of an electrical component follows a two-parameter exponential distribution, 
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H. A. Bayoud 

then the mean lifetime of this component is 1 and the guarantee lifetime of this component is  . It is 

very important in this situation to estimate the component’s lifetime mean and guarantee lifetime.  

 

 In life testing experiments, it often happens that the experiment is censored in the sense that 

the experimenter may not be in a position to observe the life times of all items put on test because of 

time limitations and other restrictions on the data collection. The two most common censoring 

schemes are Type-I and Type-II censoring schemes. In Type-I censoring scheme, the experiment 

continue up to a preselected fixed time T  but the number of failures is random, whereas in Type-II 

censoring scheme, the experimental time is random but the number of failures is fixed, k . A mixture 

of Type-I and Type-II censoring schemes is known as the hybrid censoring scheme and it can be 

described as follows. Suppose a total of n  units is placed on a life testing experiment, and the lifetimes 

of the sample units are independent and identically distributed (i.i.d.) random variables. Let the 

ordered lifetimes of these items are denoted by )()()2()1(
......

nk
xxxx   respectively. The test is 

terminated when a preselected number of failures k  out of n  items are failed, or when a preselected 

time T  on test has been reached, i.e., the test is terminated at the time point  
)(*

,min
k

xTT  , where 

)(k
x  is the k

th
 ordered lifetime. This censoring scheme was introduced firstly by Epstein [4], and it is 

popularly known as Type-I hybrid censoring scheme. It has been used quite extensively in reliability 

acceptance test in MIL-STD-781-C [8]. The censoring scheme in which the experiment is terminated 

at the time point  
)(

* ,max
k

xTT   is known as Type-II hybrid censoring scheme, this censoring 

scheme was introduced by Childs et al. [1]. This censoring scheme guaranteeing that at least k  

failures are observed at the end of the experiment. Whereas, the number of observed failures based on 

Type-I hybrid censoring scheme may equal zero if the preselected T  is less than )1(
x . So, in this case 

the inferential results are obtained under the condition that the number of observed failures is at least 

one, and moreover, there may be very few failures at the termination point of the experiment. In that 

case the efficiency of the estimator(s) may be very low.  

 

 Classical literature for estimation the parameters of a two parameter exponential distribution 

based on hybrid censored samples includes Epstein [4], Lawless (1977), Childs et al. [1], Childs et al. 

[2] and Ganguly et. al. [3]. This estimation problem has also been considered by several authors in the 

literature from the Bayesian point of view. Draper and Guttmann [10] considered the problem of 

estimating the one parameter exponential distribution from the Bayesian point of view based on Type-

II hybrid censored sample. Singh and Prasad [11] and Prasad and Singh [5] proposed empirical Bayes 

estimate for the location parameter   under the situation that the mean lifetime parameter is known 

based on complete sample. Recently, Bayoud [7] introduced Bayes estimates for the parameters of the 

Two-parameter exponential distribution based on Type-I censored samples. 

 

 In this paper, Bayes estimates for the scale and location parameters of a two exponential 

distribution are derived based on a Type-II hybrid censored sample. The scale parameter is assumed to 

follow exponential distribution with hyper parameter A , and the location parameter is assumed to 

follow uniform distribution from zero to B . The squared error function is assumed. Suggestions for 

choosing the hyper parameters A  and B  are provided. 
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 The rest of this paper is organized as follows: Section 2 describes the probability models that 

are needed in this work. Bayes and maximum likelihood estimates for the scale and location 

parameters are derived in Section 3 based on complete and Type-II hybrid censored samples. An 

illustrative example is provided in Section 4. Simulation studies are presented in Section 5. Finally, the 

main conclusions are included in Section 6. 

 

2. The Models 

2.1. Complete Sample 

Let ),(~,...,,
21

EXXX
n

. The likelihood function of the complete sample nXXX ,...,, 21  given   

and   is given by: 

     
 







n

i

ix
n

n
exxxL 1,|,...,,

21



                        (2.1) 
 

where 0 iX ; ni ,...,2,1  and 0 . 

 

 The parameter   is assumed to follow exponential distribution with p.d.f given by: 

     
0;)(   AeAg A

                    (2.2)
 

where the hyper parameter A  is a preselected positive real number that is chosen to reflect our beliefs 

about the expected value of 1 , because the expected value of   equals A1 . The hyper parameter 

A  can be easily assumed to equal one over the available sample's mean.  

 

 The parameter   is assumed to follow a uniform distribution with p.d.f given by: 

           
)1(0;

1
)( xB

B
p  

   
                                          (2.3) 

where the hyper parameter B  is a preselected positive real number that is chosen to reflect our beliefs 

about the lower bound of the x's , which can be easily assumed to equal the minimum observed value, 

)1(
x .   

 

 Based on the complete sample  
n

xxx ,...,,
21  

the joint posterior p.d.f of   and   is given by: 

  
     

     

 

)(
,|,...,,

,|,...,,
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0 0
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               (2.4) 
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where 0
11


nn ED

C  in which 


n

i
i

xAE
1

, nBED  , 0  and 
)1(

0 xB   . 

 

 The marginal posterior p.d.fs of   and   given  
n

xxx ,...,,
21

 are respectively given by: 

                                

                                      

 
B

nnC dxxxhxxxh
0

2121, ,...,,|,),...,,|( 

 

 

                                             0 ;       
)(

 
1




 



  ED

n

ee
nC

                (2.5)

  

and  

                                     

 



0

2121, ,...,,|,),...,,|(  dxxxhxxxh nnC
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0;     
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           (2.6) 

2.2. Type II Hybrid Censored Sample 

In Type-II hybrid censored samples, the test is terminated when k , a preselected number, out of n  

items are failed, or when a preselected time T  on test has been reached.  

 

 Let r  be the number of units failed before the time T , then the likelihood of the observed 

data under the Type-II hybrid censoring scheme is given by: 
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                 (2.7) 

 

 The joint posterior p.d.f of   and   based on the Type-II hybrid censored sample is given by: 
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                                   (2.8)                     

where 0 , B0 , 
rr ED

C
11

1

11
  in which   ATrnxE

r

i
i


1

)(1 , nBED  11 , and 

kk ED
C

22

2

11
  in which   AxknxE

k

k

i
i




)(
1

)(2 , nBED  22  . 

 

 The marginal posterior p.d.fs of   and   given Type-II hybrid censored data are respectively 

given by: 

         
B

HH ddatahdatah
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and 
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3. Classical and Bayesian Estimation 

In this section, Classical and Bayesian estimation for   and   are proposed using the complete and 

Type-II hybrid censored samples separately. The squared error loss is assumed to construct the Bayes 

estimates. 

 

3.1. Based on Complete Sample  

In the case of complete sample, the Bayes point estimate CB ,
̂  of   under the squared error loss is the 

mean of the marginal posterior p.d.f of  , which is given by: 





0

21,, ),...,,|()(ˆ
,

 
dxxxhE nChCB C

 

                                               









 11

11
 

nn EDC

n
                             (3.1) 

 

 Bayes point estimate CB ,
̂  of   under the squared error loss is the mean of the marginal 

posterior p.d.f of  , which is given by: 
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provided that .1n  

 

 The MLE of    and   from the complete sample are respectively: 
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3.2. Based on Type II Hybrid Censored Sample  

In the case of Type-II hybrid censored sample, the Bayes point estimate 
HB,

̂  of   under the squared 

error loss is the mean of the marginal posterior p.d.f of  , which is given by: 
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 The Bayes point estimate HB ,
̂  of   under the squared error loss is the mean of the marginal 

posterior p.d.f of  , which is given by: 
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 If 0r , then Tx
k


)( . In this case if 1k  then HB ,
̂

 
does not exist. So, if 0r  then HB ,

̂
 
 

exists only if 1k . If Tx
k


)( , then 1 kr , therefore HB ,
̂  exists for all values of k  and r  if 

Tx
k


)( .  

 

 The hyper parameter A  is assumed to equal 


r

i
i

xr
1

)(
 if Tx
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i
i
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1

)(
  if Tx

k


)( .  

The hyper parameter B  is assumed to equal )1(
x in both cases. 

 

 Ganguly et. al. [3] showed that based on the Type-II hybrid censored sample the MLE of 

 does not exist when 1k  and 0r . So, conditional MLEs, conditioning on the event 1r  when 

1k  were proposed by Ganguly et. al. [3] as follows:  
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ˆ x
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But when 2k  the MLEs of the scale and location parameters exist for all values of r  and given by: 
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4. Credible Intervals 

4.1. Based on Complete Sample 

Based on the complete sample 
n

xxx ,...,,
21

and by using the posterior density function of  , the equal- 

tailed   %1001   credible interval for   denoted by  
UL

 ,  can be obtained numerically by 

solving the following nonlinear equations: 

   2)],()0,([)],()0,([
)(
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where 



b

xa dxexba 1),(  , the incomplete gamma function. 

 

 Similarly, by using the posterior density function of  , the equal-tailed   %1001   credible 

interval for   can be easily derived as:   
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4.2. Based on Type-II Hybrid Censored Sample 

Based on a Type-II hybrid censored sample and by using the posterior density function of  , the 

equal-tailed   %1001   credible interval for   denoted by  
HUHL ,,

,  can be obtained numerically 

by solving the following nonlinear equations: 

- If  Tx k )( : 
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 Similarly, by using the posterior density function of  , the equal-tailed   %1001   credible 

interval for   can be easily derived as:  
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5. Example: Real Lifetime Data 

In this section we analyze a data set from Grubbs [6] to illustrate our methodology; the data 

summarizes the mileages at which nineteen military carriers failed. These were: 

162, 200, 271, 302, 393, 508, 539, 629, 706, 777, 884, 1101, 1182, 1463, 1603, 1984, 2355, 2880 

 

 The parameters    and   are estimated by the MLE and the proposed Bayes estimates based 

on the complete sample and based on a Type-II hybrid censored sample with arbitrary 12r  and 

800T  at which 10k . 

Based on the complete sample it can be easily observed that   

011973.0ˆ
, CMLE , 162ˆ

)1(,  xCMLE . 
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,0120424.0ˆ
, CBayes  7.121ˆ

, CBayes . 

Based on the Type-II hybrid censored sample it can be easily observed that  

 00115864.0ˆ
, HMLE , 162ˆ

, HMLE . 

,00117087.0ˆ
, HBayes  589.120ˆ

, HMLE . 

 

 It has been observed that the MLEs and the Bayes estimates are very close to each other based 

on both the complete and the Type-II hybrid censored sample. One of the natural questions is whether 

the two-parameter exponential distribution fits this data set or not. There are several methods to test 

goodness of fit of a particular distribution to a given data set. The most suitable one in our case in the 

Kolmogorov-Smirnov (KS) test as the available sample size is small.  

 

 The KS test statistics have been computed based on the MLEs and the proposed Bayes 

estimates, they respectively equal:  0.0607852 and 0.0561898 (based on the complete sample), and 

0.0621901 and 0.0488786 (based on the Type-II hybrid censored sample). The critical value of the KS 

test equals 0.27851 at 95% confidence level and at 18n , and it equals 0.33815 at 12r . Therefore, 

based on the KS test statistics and the critical values we could say that the MLE and the proposed 

Bayes estimates work quite well but the Bayes estimates performs slightly better than the MLE 

because it gives smaller values of KS test statistics based on both complete and censored samples.  

 

 On another hand, the 95% Credible intervals for the parameters   and   are respectively 

(0.000792871, 0.268425) and (44.9362, 997.211) based on the complete sample, and (0.000684133, 

0.00176701) and (41.999, 707.105) based on the Hybrid censored sample. These credible intervals 

seem to give reasonable estimates for the unknown parameters. 

 

6. Simulation Studies 

In this section, the performance of the proposed Bayes estimators of   and   is investigated through 

simulation studies based on complete and Type-II hybrid censored samples. The simulation studies are 

carried out for different values of the combination ),,,,( Tkn . In these studies, we have generated 

1000 random samples of size n (=5 and 30) from a two parameter exponential distribution, ),( E ,  

with various values for the parameters ),(  . For the purpose of comparison, the average values of 

the Bayes estimators HB ,
̂  and HB ,

̂ , and the MLEs HMLE,
̂  and HMLE,

̂ , along with their MSE, in 

parentheses, are reported in Table 1 and Table 2 based on various Type-II hybrid censoring schemes. 

The true location and scale parameters are assumed to equal ),(  )1,5.0( , )1,5.3( , )1,5.6( , 

)10,5.0( , )10,5.3(  and )10,5.6( . For simplicity, the hyper parameters A  and B  are assumed to equal 

the inverse of the mean of the available sample and the minimum observation respectively. Estimators 

with the smallest MSE values in the most cases are preferred. 
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Table 1: MLE and BE along with their MSE based on various Type-II Hybrid censoring Schemes when 

1 and 5.3,5.0 and 5.6 . 

n    
),( kT  

HMLE,
̂  HB ,

̂  
HMLE,

̂  HB ,
̂  

5 

0.5 

(1,3) 1.42 (0.36) 1.13 (0.19) 1.77 (19.07) 0.99 (0.67) 

(3,3) 1.41 (0.35) 1.11 (0.19) 0.90 (0.51) 0.79 (0.26) 

(5,3) 1.41 (0.33) 1.09 (0.15) 0.79 (0.41) 0.73 (0.20) 

(1,5) 1.41 (0.31) 1.10 (0.14) 0.85 (0.43) 0.78 (0.24) 

(3,5) 1.38 (0.31) 1.09 (0.16) 0.88 (0.51) 0.80 (0.27) 

(5,5) 1.39 (0.31) 1.08 (0.15) 0.79 (0.35) 0.73 (0.19) 

3.5 

(1,3) 1.06 (0.01) 0.93 (0.01) 10.22(210.6) 2.21 (1.85) 

(3,3) 1.06 (0.01) 0.97 (0.01) 6.29 (25.81) 2.85 (0.88) 

(5,3) 1.05 (0.01) 0.96 (0.01) 6.16 (37.27) 2.78 (0.99) 

(1,5) 1.06 (0.01) 0.96 (0.01) 5.94 (25.16) 2.77 (1.01) 

(3,5) 1.05 (0.01) 0.96 (0.01) 5.68 (14.87) 2.75 (0.98) 

(5,5) 1.06 (0.01) 0.96 (0.01) 5.74 (21.56) 2.74 (1.05) 

6.5 

(1,3) 1.03 (0.00) 0.92 (0.01) 19.08(645.9) 2.49 (16.16) 

(3,3) 1.03 (0.00) 0.96 (0.00) 10.55(68.74) 3.45 (9.62) 

(5,3) 1.03 (0.00) 0.96 (0.00) 10.58(64.22) 3.44 (9.70) 

(1,5) 1.03 (0.00) 0.96 (0.00) 10.65(75.57) 3.45 (9.65) 

(3,5) 1.03 (0.00) 0.96 (0.00) 10.76(87.00) 3.46 (9.60) 

(5,5) 1.03 (0.00) 0.96 (0.00) 10.77(75.43) 3.47 (9.49) 

30 

0.5 

(1,15) 1.06 (0.01) 1.00 (0.00) 0.59 (0.035) 0.57 (0.029) 

(3,15) 1.07 (0.01) 1.00 (0.00) 0.54 (0.017) 0.53 (0.016) 

(5,15) 1.06 (0.01) 1.00 (0.00) 0.54 (0.015) 0.54 (0.014) 

(1,25) 1.07 (0.01) 1.01 (0.01) 0.54 (0.014) 0.54 (0.013) 

(3,25) 1.06 (0.01) 1.00 (0.00) 0.54 (0.015) 0.53 (0.015) 

(5,25) 1.06 (0.01) 1.00 (0.00) 0.53 (0.011) 0.52 (0.010) 

3.5 

(1,15) 1.01 (0.00) 1.00 (0.00) 4.07 (1.69) 3.22 (0.58) 

(3,15) 1.01 (0.00)  1.00 (0.00) 3.72 (0.59) 3.38 (0.37) 

(5,15) 1.01 (0.00) 1.00 (0.00) 3.76 (0.63) 3.41 (0.36) 

(1,25) 1.01 (0.00) 1.00 (0.00) 3.72 (0.69) 3.29 (0.41) 

(3,25) 1.01 (0.00) 1.00 (0.00) 3.78 (0.65) 3.43 (0.37) 

(5,25) 1.01 (0.00) 1.00 (0.00) 3.77 (0.61) 3.42 (0.35) 

6.5 

(1,15) 1.01 (0.00) 1.00 (0.00) 7.60 (6.82) 5.02 (3.11) 

(3,15) 1.01 (0.00)  1.00 (0.00) 7.00 (2.10) 5.78 (1.32) 

(5,15) 1.01 (0.00) 1.00 (0.00) 7.06 (2.27) 5.83 (1.30) 

(1,25) 1.01 (0.00) 1.00 (0.00) 7.11 (2.63) 5.60 (1.64) 

(3,25) 1.01 (0.00) 1.00 (0.00) 6.95 (1.64) 5.76 (1.19) 

(5,25) 1.01 (0.00) 1.00 (0.00) 6.93 (1.97) 5.74 (1.28) 
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Table 2: MLE and BE along with their MSE based on various Type-II Hybrid censoring Schemes when 10  

and 5.3,5.0 and 5.6 . 

n    ),( kT  
HMLE,

̂  HB ,
̂  

HMLE,
̂  

HB ,
̂  

5 

0.5 

(10,3) 10.41(0.33) 10.00 (0.23) 1.49 (6.17) 1.32 (3.17) 

(12,3) 10.42(0.35) 10.00 (0.24) 0.92 (0.53) 0.89 (0.47) 

(14,3) 10.41(0.33) 9.96 (0.25) 0.84 (0.46) 0.82 (0.41) 

(10,5) 10.43(0.37) 10.02 (0.22) 0.80 (0.34) 0.78 (0.31) 

(12,5) 10.40(0.32) 10.00 (0.18) 0.88 (0.62) 0.86 (0.54) 

(14,5) 10.39(0.30) 9.99 (0.18) 0.81 (0.38) 0.80 (0.34) 

3.5 

(10,3) 10.05(0.01) 9.99 (0.00) 9.74 (132.3) 6.46 (24.39) 

(12,3) 10.06(0.01) 10.00 (0.00) 5.82 (17.79) 5.07 (8.82) 

(14,3) 10.05(0.01) 9.99 (0.00) 5.90 (30.08) 5.04 (10.91) 

(10,5) 10.06(0.01) 9.99 (0.00) 5.97 (25.53) 5.13 (10.67) 

(12,5) 10.06(0.01) 10.00 (0.00) 5.93 (20.08) 5.13 (9.66) 

(14,5) 10.06(0.01) 10.00 (0.00) 5.89 (19.68) 5.11 (9.72) 

6.5 

(10,3) 10.03(0.00) 9.99 (0.00) 19.39 (3526) 9.07 (29.43) 

(12,3) 10.03(0.00) 10.00 (0.00) 10.49(63.72) 8.26 (18.15) 

(14,3) 10.03(0.00) 9.99 (0.00) 11.48(103.9) 8.77 (23.94) 

(10,5) 10.03(0.00) 9.99 (0.00) 10.72)54.23) 8.49 (16.90) 

(12,5) 10.03(0.00) 9.99 (0.00) 10.87(72.46) 8.51 (18.83) 

(14,5) 10.03(0.00) 9.99 (0.00) 10.57(59.66) 8.35 (17.38) 

30 

0.5 

(10,15) 10.06(0.01) 10.00 (0.00) 0.58 (0.03) 0.58 (0.03) 

(12,15) 10.07(0.01) 10.00 (0.01) 0.54 (0.02) 0.54 (0.02) 

(14,15) 10.06(0.01) 9.99 (0.00) 0.54 (0.01) 0.54 (0.01) 

(10,25) 10.07(0.01) 10.00 (0.00) 0.54 (0.02) 0.54 (0.02) 

(12,25) 10.06(0.01) 10.00 (0.00) 0.55 (0.02) 0.55 (0.02) 

(14,25) 10.06(0.01) 10.00 (0.00) 0.54 (0.01) 0.54 (0.01) 

3.5 

(10,15) 10.01(0.00) 10.00 (0.00) 4.11 (1.92) 3.99 (1.60) 

(12,15) 10.01(0.00) 10.00 (0.00) 3.69 (0.48) 3.65 (0.44) 

(14,15) 10.01(0.00) 10.00 (0.00) 3.75 (0.51) 3.71 (0.47) 

(10,25) 10.01(0.00) 10.00 (0.00) 3.85 (0.81) 3.79 (0.73) 

(12,25) 10.01(0.00) 10.00 (0.00) 3.74 (0.64) 3.69 (0.59) 

(14,25) 10.01(0.00) 10.00 (0.00) 3.73 (0.55) 3.68 (0.50) 

6.5 

(10,15) 10.01(0.00) 10.00 (0.00) 7.52 (5.81) 7.13 (4.18) 

(12,15) 10.01(0.00) 10.00 (0.00) 7.02 (2.12) 6.86 (1.81) 

(14,15) 10.01(0.00) 10.00 (0.00) 6.90 (1.90) 6.74 (1.64) 

(10,25) 10.01(0.00) 10.00 (0.00) 7.08 (2.55) 6.87 (2.10) 

(12,25) 10.01(0.00) 10.00 (0.00) 6.91 (2.18) 6.76 (1.88) 

(14,25) 10.01(0.00) 10.00 (0.00) 6.90 (1.90) 6.73 (1.64) 

 

 

 Table 1 and Table 2 show that Type-II hybrid censoring is an efficient censoring scheme to 

estimate the location and scale parameters of a two-parameter exponential distribution.  
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 It can be seen from Table 1 and Table 2 that the proposed Bayes estimates HB ,
̂  and HB ,

̂
 

give excellent results, and dominate in terms of MSE the MLEs in all cases. It can be also 

concluded that when  n  is large, the MLE and the proposed Bayes estimators give quite similar 

results, with very small values of MSE. When n  is small, the proposed Bayes estimators HB ,
̂  and 

HB ,
̂  give excellent results for estimation the location and scale parameters, and perform in terms 

of MSE better than the MLEs. It is noticed also from Tables 2 and 3 that, the MLE of   gives bad 

results in some cases such as, when the true  5.3  and based on the first censoring scheme.  

 

 It can be also seen from Table 1 and Table 2 that the proposed Bayes estimates HB ,
̂ and 

HB ,
̂  are not as sensitive to the changes in the parameters n , T  and k  as the MLEs HMLE,

̂  and 

HMLE,
̂  are.   

 

7. Conclusions 

In this paper, we have considered the Type-II hybrid censoring scheme when lifetimes have a two-

parameter exponential distribution from Bayes point of view. Prior exponential and uniform 

probability distributions were assumed for the scale and location parameters respectively. MLEs, 

Bayes point estimates and credible intervals for   and   were proposed based on complete and 

Type-II hybrid censored samples under the squared error loss. The Bayes estimates for both 

parameters have been derived in closed forms. Credible intervals of the location parameter were 

derived also in closed forms based on the complete and the Type-II censored samples, but it could 

not be derived in closed form for the scale parameter. It was shown from real data set and from 

simulation studies that the proposed Bayes estimates HB ,
̂  and HB ,

̂  gave excellent results and 

dominate, in terms of MSE, the maximum likelihood estimates in all cases. Moreover, it was 

observed in some cases that the MLE of  gives very large MSE values. So, it was recommended 

to use the proposed Bayes estimates HB ,
̂  and HB ,

̂  to estimate the parameters of the two-parameter 

exponential distribution based on complete and Type-II hybrid censored samples.  
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