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Abstract
As we known, ants are blind and single ant’s ca-
pacity is limited. But researchers have studied
that ant colonies have egregious ability to search
shorter path which loads between their nests and
foods. Inspired from this and based on ant colony
optimization(ACO), we propose a new approach
about attributes reduction of rough sets. Using
this approach, we can reduce attributes as maxi-
mum as possible, obtain many different results syn-
chronously and reduce the scope of core attributes.
Experiment shows that by this new approach, bet-
ter results can be obtained.

Keywords: Rough sets, Attributes reduction, Ant
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1. Introduction
The need for discovering knowledge from infor-
mation increases with the forward rapid develop-
ment of the recent civilization [1]-[3]. One of
the most useful methods for knowledge discov-
ering is the rough set theory(RST ) which pro-
posed by Z. Pawlak[4]. And attributes reduction
is one of the most important subjects of RST .
Due to attributes reduction is a NP-hard problem,
most of approaches about attributes reduction are
heuristic[6], [7]. As an approach of attributes re-
duction, binary discernibility matrices have many
interesting properties[8]. In this paper, we pro-
pose a new approach about attributes reduction
which based on binary discernibility matrices and
ant colony optimization(ACO).

As we known, a wonderful self-organization be-
havior will usually be produced from the collec-
tive behavior of social animals. Take a colony of
ants for example, biologists had studied the phe-
nomenon carefully and found that ants cooper-
ate to find shorter routing path by means of in-
direct communications using a kind of substance
called “pheromone"[10]. Inspired from this, ant
system(AS) was proposed by Italian researchers M.

Dorigo, V. Maniezzo and A. Colorni[13]. This al-
gorithm was proposed to solve the travelling sales-
man problem(TSP ) firstly. These years, M. Dorigo
etc. have expanded AS algorithm, and proposed a
new generales optimization technique: ant colony
optimization(ACO)[10]. All the algorithms which
accord with the frame of ACO can be called as
ACO algorithm[14]. Many scholars are attracted
to study ACO and in the past ten years the al-
gorithm has been widely applied to the fields of
combinatorial optimization, network routing, data
mining etc., [15]-[18].

In the next Section, some preliminaries knowl-
edge about attributes reduction and binary dis-
cernibility matrix is introduced. Section 3 is
devoted to propose a new approach based on
ACO and binary discernibility matrix. Experiment
about the new approach is given in Section 4. Con-
clusion is Section 5.

2. Preliminaries knowledge
Let an information system be S = 〈U,A, V, f〉,
where U is a non-empty finite set of objects, A is
a non-empty finite set of attributes, V =

⋃
a∈A Va

and Va is the domain of a, f : U ×A → V is infor-
mation function. Let R be an equivalence relation
on U . And a set of equivalence classes with respect
to R is as follows:

U/R = {[xi]R|xi ∈ U},

where [xi]R = {xj |(xi, xj) ∈ R}. Each non-empty
subset B ⊆ A determines an indiscernibility rela-
tion as follows:

RB = {(x, y) ∈ U2|f(x, al) = f(y, al),∀al ∈ B},

then RB is an equivalence relation on U and let
[xi]B = {xj |(xi, xj) ∈ RB}.
Definition 1 [5] 〈U,A, V, f〉 is an information
system, for B ⊆ A, if RA = RB, then B is a par-
tition consistent set. If RA = RB, and @B′ ⊂ B,
s.t., RB′ = RA, then B is a partition reduct.



Table 1: A general information system
U \A humidity rainy frosty sunny windy

(a1) (a2) (a3) (a4) (a5)
Monday(x1) Low No Yes Shady Low
Tuesday(x2) Average Yes No Commonly Average

Wednesday(x3) Average No No Sunshine Average
Thursday(x4) High Yes Yes Shady Average
Friday(x5) High Yes No Shady High

Definition 2 S = 〈U,A, V, f〉 is an information
system,

−→
U = {(xi, xj) ∈ U2|∃a ∈ A s.t., f(xi, a) 6=

f(xj , a)}. Let ψ :
−→
U ×A → {0, 1}. Define

ψ((xi, xj), al) =
{

1 if f(xi, al) 6= f(xj , al),
0 otherwise.

Then 〈−→U ,A, {0, 1}, ψ〉 is called binary discernibility
matrix with respect to S.

Definition 3 [9] S = 〈U,A, V, f〉 is an informa-
tion system, Bk(k ≤ r) is a partition reduct, let

C =
⋂

k≤r

Bk (1)

denote the core attributes set.

For an information system, attributes reduction is
a NP-hard problem. But it can be solved by heuris-
tic approaches. In heuristic approaches, weights of
attributes are the most important. And for a bi-
nary discernibility matrix M = 〈−→U ,A, {0, 1}, ψ〉,
weights of attributes are obtained as follows[11]:

W (a) =
∑

(xi,xj)∈−→U
w(xi, xj)× ψ((xi, xj), a), (2)

where a ∈ A, w(xi, xj) = 1P
b∈A ψ((xi,xj),b)

.

Example 1 Considering a general information
system (See Table 1.), it is about the weather of
five workdays. Where U = {Monday, Tuesday,
Wednesday, Thursday, Friday}, A = {humidity,
rainy, frosty, sunny, windy}. The matrix M of
〈−→U ,A, {0, 1}, ψ〉 can be calculated as follows accord-
ing to Definition 2.:

M =




−→
U \A a1 a2 a3 a4 a5

(x1, x2) 1 1 1 1 1
(x1, x3) 1 0 1 1 1
(x1, x4) 1 1 0 0 1
(x1, x5) 1 1 1 0 1
(x2, x3) 0 1 0 1 0
(x2, x4) 1 0 1 1 0
(x2, x5) 1 0 0 1 1
(x3, x4) 1 1 1 1 0
(x3, x5) 1 1 0 1 1
(x4, x5) 0 0 1 0 1




.

According to Equation (2), the weight of attribute
a1 can be calculated as follows:

W (a1) =
1
5

+
1
4

+
1
3

+
1
4

+
1
3

+
1
3

+
1
4

+
1
4

=
132
60

.

3. Approach based on ant
colony optimization

Let bi(tl)(i = 0, 1, · · · , |A|) denote the number of
agents(artificial ants) in node i at the time tl,
then m =

∑n
i=0 bi(tl) denotes the total amount of

agents. Let τij(tl) denote the amount of pheromone
on the edge: (i, j), and tabuk denote the nodes
which agent k has gone.

Definition 4 For a general information system
〈U,A, V, f〉 and its binary discernibility matrix
〈−→U ,A, {0, 1}, ψ〉. ∀ai ∈ A, let ai denote a node,
and add a virtual node noted as Θ. ∀(ai, aj) ∈ (A∪
{Θ})2, there is an edge connects between node ai

and node aj, and ∀(xi, xj) ∈ −→U , let ψ((xi, xj),Θ) =
0. Then, let all the agents move from Θ till making
circles. And the anticipant degree of moving from
ai to aj is defined as follows:

ηaiaj =
∑

(xi,xj)∈−→U
(ψ((xi, xj), aj)−

∨a∈tabuk
(ψ((xi, xj), aj) ∧ ψ((xi, xj), a))). (3)



Where aj ∈ Jk = (A−tabuk)∪{Θ}, and Jk denotes
the nodes which agent k can go. When tabuk =
{Θ}, ηΘaj

=
∑

(xi,xj)∈−→U ψ((xi, xj), aj).

In the iterative process: tl → tl+1, the probability
of agent k select node aj when it is in node ai is
defined as follows:

pk
aiaj

(tl) =

{
[τaiaj

(tl)]
α·[ηaiaj

]βP
a∈Jk

[τaia(tl)]α·[ηaia]β
, if aj ∈ Jk;

0, otherwise.
(4)

Where, ηaiaj
is a heuristic parameter which de-

notes the anticipant degree of moving from node
ai to node aj , and α, β are both parameters which
denote the significance of accumulated information
and heuristic factor respectively. In many cases,
ηaiaj

= 1
daiaj

, where daiaj
denotes the distance be-

tween node ai and aj . But in this approach, ηaiaj is
obtained according to Equation (3). After agents
making circles, update the amount of pheromone
on these paths according to the following equation:

τaiaj
(tl+1) = (1− ρ) · τaiaj

(tl) + ∆τaiaj
(tl), (5)

where ρ(0 < ρ < 1) denotes the vaporing parameter
of pheromone, 1−ρ denotes the supportable param-
eter of pheromone, and ∆τaiaj

(tl) denotes the in-
creaser amount of pheromone on the path: ai → aj

in the iterative process: tl → tl+1. And let

∆τaiaj
(tl) =

m∑

k=1

∆kτaiaj
(tl). (6)

Where, ∆kτaiaj
(tl) denotes the amount of

pheromone which agent k leaves on the path: ai →
aj in the iterative process: tl → tl+1, and m de-
notes the number of agents. Let

∆kτaiaj
(tl) =





Q
Nk(tl)

, if agent k moves through
path: ai → aj ;

0, otherwise.
(7)

Where Q is a constant and Nk(tl) denotes the num-
ber of nodes that agent k has passed(except the
node Θ) in the iterative process: tl → tl+1.

Remark 1 Based on ACO, we can construct an
ant system with respect to an information system.
Then let agents simulate the real ants to search
shorter paths. As we known, ants select paths ac-
cording to the pheromone left on the paths. Then
we define some parameters in order to guide these
agents to make circles. And these circles are all the
partition consistent sets of the information system.

Theorem 1 For a general information system
〈U,A, V, f〉 and an agent is in node ai, ∀aj ∈
(A− tabuk), ηaiaj

= 0 if and only if tabuk−{Θ} is
a partition consistent set.

Proof 1 ∀aj ∈ (A − tabuk), ηaiaj =∑
(xi,xj)∈−→U (ψ((xi, xj), aj) − ∨a∈tabuk

(ψ((xi,
xj), aj) ∧ ψ((xi, xj), a))) =

∑
(xi,xj)∈−→U (ψ((xi,

xj), aj) − ψ((xi, xj), aj) ∧ (∨a∈tabuk
ψ((xi,

xj), a))). Due to ∀(xi, xj) ∈ −→
U , ψ((xi, xj),

aj) ≥ ψ((xi, xj), aj) ∧ (∨a∈tabuk
ψ((xi, xj),

a)), then ηaiaj
= 0 ⇒ ∀(xi, xj) ∈ −→

U , ψ((xi,
xj), aj) = ψ((xi, xj), aj) ∧ (∨a∈tabuk

ψ((xi,
xj), a)) ⇒ ∀(xi, xj) ∈ −→

U , ψ((xi, xj),
aj) ≤ ∨a∈tabuk

ψ((xi, xj), a) ⇒ ∀(xi, xj) ∈ −→
U ,

if ψ((xi, xj), aj) = 1, then ∃a ∈ tabuk, s.t.,
ψ((xi, xj), a) = 1 ⇒ (xi, xj) ∈ −→U , if ψ((xi, xj),
aj) = 1, then ∃a ∈ (tabuk − {Θ}), s.t., ψ((xi, xj),
a) = 1 ⇒ ∀(xi, xj) ∈ −→U , if f(xi, aj) 6= f(xj, aj),
then ∃a ∈ (tabuk − {Θ}), s.t., f(xi, a) 6= f(xj,
a). Then ∀(xi, xj) /∈ RA ⇒ ∃b ∈ A, s.t.,
f(xi, b) 6= f(xj, b), if b ∈ (A − tabuk), then
∃a ∈ (tabuk − {Θ}), s.t., f(xi, a) 6= f(xj, a), i.e.,
(xi, xj) /∈ Rtabuk−{Θ}; if b ∈ (tabuk − {Θ}), and
f(xi, b) 6= f(xj, b) then (xi, xj) /∈ R(tabuk−{Θ}).
Therefore, R(tabuk−{Θ}) ⊆ RA, and due to
RA ⊆ R(tabuk−{Θ}) holds all the time, so,
R(tabuk−{Θ}) = RA, i.e., (tabuk − {Θ}) is a
partition consistent set.

On the other hand, when (tabuk − {Θ}) is
a partition consistent set, if ∃aj ∈ (A − tabuk),
s.t., ηaiaj

6= 0. And according to above discus-
sion, ∀(xi, xj) ∈ −→U , ψ((xi, xj), aj) ≥ ψ((xi, xj),
aj) ∧ (∨a∈tabuk

ψ((xi, xj), a)), so, ∃(xi, xj) ∈ −→U ,
s.t., ψ((xi, xj), aj) = 1, and ∨a∈tabuk

ψ((xi, xj),
a)) = 0, i.e., ∀a ∈ (tabuk − {Θ}), ψ((xi, xj),
a)) = 0, namely, ∀a ∈ (tabuk − {Θ}), f(xi,
a) = f(xj, a), so, (xi, xj) ∈ R(tabuk−{Θ}), but (xi,
xj) ∈ −→U ⇒ ∃b ∈ A, s.t., f(xi, b) 6= f(xj, b) ⇒ (xi,
xj) /∈ RA. Therefore, R(tabuk−{Θ}) ⊆ RA does not
hold. It is inconsistent with that (tabuk − {Θ}) is
a partition consistent set. So, ∀aj ∈ (A − tabuk),
ηaiaj

= 0.

Note 1 For agent k is in node ai, if ∀a ∈ Jk,
ηaia = 0, then for any aj ∈ Jk, let

pk
aiaj

(tl) =
[τaiaj (tl)]

α · [ηaiaj ]
β

∑
a∈Jk

[τaia(tl)]α · [ηaia]β

=
[τaiaj

(tl)]α∑
a∈Jk

[τaia(tl)]α
. (8)



Table 2: Status of crops in China
U \A a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

1983 10,350 29,854 16,695 1,402 1,316 32 55 0 332 0 546
1984 10,839 30,679 15,840 1,690 1,445 37 59 149 432 0 619
1985 11,382 33,140 15,588 1,927 1,655 47 59 160 535 0 705
1986 11,896 33,719 16,623 2,112 1,796 59 62 188 555 333 824
1987 12,191 32,773 18,034 2,216 1,835 79 72 219 590 379 955
1988 12,538 34,222 20,153 2,480 2,018 96 80 274 696 419 1,061
1989 12,805 35,281 21,164 2,629 2,123 107 96 282 720 436 1,152
1990 13,021 36,241 21,002 2,857 2,281 126 107 323 795 475 1,237
1991 13,193 36,965 20,621 3,144 2,452 154 118 395 922 524 1,351
1992 13,485 38,421 20,733 3,431 2,635 180 125 454 1,020 564 1,557
1993 13,988 39,300 21,731 3,842 2,854 234 137 274 1,180 564 1,823
1994 14,919 41,462 24,053 4,499 3,205 327 101 755 1,479 609 2,143
1995 15,862 44,169 27,865 5,260 3,648 415 202 935 1,677 673 2,517
1996 13,361 36,284 23,728 4,584 3,158 356 181 833 1,897 736 2,813
1997 14,542 40,035 25,576 5,269 3,596 441 213 979 1,897 681 3,602
1998 14,803 42,256 26,904 5,724 3,884 480 235 1,056 2,021 745 3,907
1999 15,025 43,020 27,926 5,949 3,891 505 251 1,116 2,135 807 4,122
2000 15,152 44,682 29,032 6,125 4,031 533 274 1,208 2,243 919 4,279
2001 14,996 45,743 29,826 6,334 4,184 549 293 1,210 2,337 1,123 4,374
2002 15,189 46,292 31,655 6,587 4,327 585 317 1,250 2,462 1,400 4,566
2003 15,500 46,602 34,054 6,933 4,519 631 357 1,312 2,607 1,849 4,705
2004 15,738 48,189 36,639 7,245 4,702 676 399 1,351 2,724 2,368 4,902

Theorem 2 Agents make circles(coming back to
node Θ) only when tabuk − {Θ} is a partition con-
sistent set in general information system.

Proof 2 ∀(xi, xj) ∈ −→
U , ψ((xi, xj), Θ) = 0, so,

when an agent is in node ai, ηaiΘ = 0, then
pk

aiΘ
(tl) 6= 0 if and only if ∀a ∈ Jk, ηaia =

0(according to Note 1). So agent k make circles,
i.e., coming back to node Θ only when ∀aj ∈ Jk =
(A − tabuk) ∪ {Θ}, ηaiaj = 0 i.e., only when,
∀aj ∈ (A − tabuk), ηaiaj = 0. Then according to
Theorem 1, tabuk − {Θ} is a partition consistent
set.

Remark 2 According to Theorem 2, agents makes
circles are all partition consistent sets in general
information system. Then using ant colony opti-
mization, we can obtain many different partition
consistent sets synchronously, and we can obtain
the partition reduct possibly. Furthered, the mini-
mal reduct can be obtained possibly.

4. Experiment
Table 2. is a general information about the status of
crops in China(http://www.agri.gov.cn/sjzl/baips-
h/WB2005.htm#12). There are 22 objects which

represent the years and 11 attributes which
represent the outputs of various crops, and
denoted as a1, a2 · · · , a11.

4.1. Experiment about reduc-
ing attributes as maximum
as possible

In this experiment, let α = 1, β = 1, Q = 10,
ρ = 0.5, and according to attributes’ value orderly,
we disperse their domain into average 4 classes
which denoted as 1, 2, 3, 4. Then the continuous
value information system can be transformed into
a discrete value information system. According to
Theorem 2, for each agent in every cycle, there is
a partition consistent set(partition reduct) corre-
spondingly. Our experiment has been performed 4
times according to 4 different cases: 10 agents and
5 cycles, 10 agents and 10 cycles, 100 agents and
10 cycles, 10 agents and 100 cycles (See Fig 1.).

From Fig 1., we can find that: for different
cases, the number of partition consistent sets or
partition reducts which contain 5 attributes is the
maximum. And we have affirmed that the number
of attributes in the minimal reducts of this infor-
mation system is 5 when it is dispersed averagely



Fig. 1: Numbers of partition consistent sets in four
cases

into a discrete 4-value information system.
According to the theory of ACO, we may get in

the partial optimization sometimes. In this paper,
that is partition consistent set or partition reduct
with more attributes than other partition reduct.
But we can still use this new approach to obtain
many results synchronously.

Remark 3 The time cost: Tc for this approach can
be estimated as: Tc ≤ O(m·n·|U |2 ·|A|2). Where, m
denotes the number of agents and n denotes cycle
count.

For the binary discernibility matrix
〈−→U ,A, {0, 1}, ψ〉 with respect to a given infor-
mation system 〈U,A, V, f〉, |−→U | ≤ |U |·(|U |−1)

2 .
And for agent k, when it is in the original node,
i.e., Θ, the time cost: tk1 for selecting next node
is: tk1 ≤ O( |U |·(|U |−1)

2 · |A|). Then, when this
agent has select one node, there are |A| − 1
attributes left, so, the time cost: tk2 for selecting
next node is: tk2 ≤ O( |U |·(|U |−1)

2 · (|A| − 1)). And
so on, the time cost for agent k coming back to
the node Θ is: tk ≤ ∑|tabuk|−1

i=0 O( |U |·(|U |−1)
2 ·

(|A| − i)) ≤ ∑|A|
i=0 O( |U |·(|U |−1)

2 · (|A| − i)) =
O( |U |·(|U |−1)

2 · |A|·(|A|+1)
2 ). So, for m agents

and n cycle count, the total time cost:
Tc ≤ n · ∑m

k=1 tk ≤ O(m · n · |U |2 · |A|2).
From Fig 2., we can obtain affirmance of the
time cost in this experiment, and we can reach a
conclusion that the time cost is polynomial with
numbers of attributes, objects, agents and cycle
count, not exponential.

Fig. 2: Time costs in four cases

4.2. Remark about obtaining
many different results syn-
chronously and reducing
the scope of core attributes

When using the approach which based on weights
of attributes to reduce information system, we
can obtain only one result always in this experi-
ment. Based on the discussion above, for kinds
of cases(different numbers of agents or cycles), we
can obtain at most a × b partition consistent sets.
Where a denotes the number of agents and b de-
notes the number of cycles. In despite of that there
are much of the same results, we can still obtain
many different results synchronously through this
new approach. Then these different results can be
selected to make different decisions.

And according to Definition 3., ordinarily, the
more different partition consistent sets(partition
reducts) we have, the smaller scope of core at-
tributes is. Because we can obtain many differ-
ent results(partition consistent sets or partition
reducts) using this new approach, then we can re-
duce the scope of core attributes. Later, we can use
the most important attributes in restricted cases.

5. Conclusion

In this paper, we present an approach about
attributes reduction based on ant colony
optimization(ACO). By this approach, we
can obtain the results as simply as possible and



reduce the scope of core attributes in order to
assist managers. In the future, we can apply this
approach into much larger information systems
and knowledge reduction of decision information
systems.
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