
Study of Quantum Genetic Algorithm Based on
Mutative Scale Chaotic Optimization

Hao Teng1,2 Baohua Zhao2 Bingru Yang1 Bin He3
1Knowledge Engineering Institute, University of Science and Technology Beijing, Beijing 100083, P. R. China

 2School of Information Science and Engineering, University of Jinan, Jinan 250022, P. R. China
 3Software faculty, Southwest Jiaotong University, Chengdu 610031, P. R. China

Abstract
Aiming at the trouble of easy getting into local
minimum in quantum genetic algorithm, this paper
presents a new hybrid quantum genetic algorithm.
Using the method of mutative scale chaos optimization
strategy, chaotic search for optimization is
implemented to the colony which has been processed
one time with quantum genetic algorithm, which can
lead rapid evolution of the colony. The method has
advantages such as high searching efficiency, good
computing precision and being convenient to use, etc.
The test of typical function shows the performance of
this kind of method is better than quantum genetic
algorithm and genetic algorithm.

Keywords: GA, QGA, Chaos optimization, Mutative
scale

1. Introduction
Genetic algorithm which possesses very strong robust
and adjustability is a direct search method. Though
genetic algorithm has shown a lot of its tremendous
advantages, it also exposes some limits such as large
calculation storage, not converging to global
optimization by all means, losing the best
chromosome in the colony and premature convergence
in the process of evolution. To resolve these troubles,
Narayanan presented Quantum Genetic Algorithm
(QGA), which carries out colony updating by the
method of combining quantum bit coding with binary
coding, and effectively settles the troubles of
premature convergence and losing the best
chromosome in GA [1]-[2]. A mass of literature shows
that QGA is a kind of efficient parallel algorithm. But
it is easy to get in local minimum, which obviously
has the defect of premature convergence. Chaos
movement can non-repeatedly cover all state in a
certain range, according to its own rules. Thus,
optimizing search with chaos variable has, without
question, more advantage than random search [3]. This
paper gives a new chaos quantum genetic algorithm,

Mutative Scale Chaos Quantum Genetic Algorithm
(MSCQGA), composed with mutative scale chaos
optimization strategy and quantum genetic algorithm.
Its characteristic is: to perpetually shrink optimizing
variable’s search space and regulation parameter, lead
the colony to process a new turn evolution, and
generate more advantageous optimal individual.
Thereby, MSCQGA has improved the characteristic of
QGA and effectively overcome the defects existed in
QGA. The test of typical function shows that the
performance of this kind of method is better than
quantum genetic algorithm and genetic algorithm.

2. Mutative scale chaos
optimization algorithm

2.1. Chaos optimization algorithm
In a way, Optimization Algorithm is the best choose to
discuss the decision making problem. Through proper
math modeling, the decision making can be equal to
the study of seeking the global minimum and
maximum in the state space. If objective function of
the continuous object which needs optimization can be
expressed as follows:

f*=f(*
ix)=minf(xi), i=1, 2, …, n, xi [∈ ai, bi] (1)

Where, x is a decision making variable, a vector,
whose dimension is equal to the number of the
decision making parameters. f(x) is the math model
and the objective function of the decision making
problem. Chaos Optimization Algorithm is the usual
method to resolve the problems like that.

In the Chaos Optimization Algorithm, logistic
map are normally used to describe it:

1 (1)n n nx x xμ+ = − (2)
Where, μ is the control parameter, which can not

bigger than 4，so we choose μ=4.
If 00 x 1≤ ≤ , n=0, 1, 2,…. When μ=4, the system

above is completely in chaos state. If optimization
object can be expressed by formula (1) and the
variable dimension is m, Chaos Optimization
Algorithm’s basic step usually is as follows:

Step1. Algorithm initialization: respectively endue
0x in formula (2) with m initial numerical value which

only have tiny difference between them, note to avoid
choosing several especial values such as 0, 0.25, 0.5,
0.75 and 1, and get the count of m chaos variables with
different track and gain the m numerical value xi,n by
iterating for n times, where i=1, 2, …, m.

Step2. If k=0，xi(0)= ci+dixi,n, ci, di are constants,
which are respectively equal to translating parameter
and flexing parameter, ensuring that chaotic variable’s
changing range flexes the relevant optimization
variable of formula (1) in its value rang, and substitute
it into formula (1) to calculate the performance index
f(x(0)) (following simply marked as f(0)), then order

*
ix = xi(0), f*=f(0).

Step3. k:=k+1. With the following carrier wave
method, substitutes the selected m chaos variable xi,n+k
respectively into m numeral optimization variables in
formula (1) using the formula (3), and makes it
become the chaos variable xi(k):

xi(k)=ci+dixi,n+k (3)
Where, the meanings of ci, di are equal to them in

step2.
Step4. Processes iterative search with chaos

variable. Substitutes xi(k) into formula (1) to calculate
the performance index f(k).

If f(k)≥f* then f*=f(k), *
ix =xi(k) Else if f(k)<f*

then abandons xi(k).
If f* are remained through some steps search,

returns to step1 and repeatedly calculates to gain m
numeral chaos variable xi,n, and orders 0k ′ = ,then
returns to step5. Or, returns to step3.

Step5. Makes use of formula (4) to process the
second carrier wave.

*
,() (0.5)i i i i n kx k x xα +′ = + − (4)

Where, ()ix k ′ is relative to the chaos variable of
formula (1) in the less feasible field’s ergodicity
interval. Where, αi is regulation parameter, *

ix is the
optimal solution in the coarse search stage.

Step6. Substitutes ()ix k ′ into formula (2),
continues to search by iterating, and calculates the
relevant performance index ()f k ′ .

If *()f k f′ ≥ then f*= ()f k ′ , *
ix = ()ix k ′

Else if ()f k ′ <f*, then abandons ()ix k ′ .
: 1k k′ ′= + .

Step7. If it satisfies the ending condition, stop
searching, and outputs the optimal solution *

ix , *f .
Or, returns to step5.

2.2. Mutative scale chaos
optimization algorithm

The simulation result of abundant optimization
examples shows that the optimizing efficiency of
chaos optimization algorithm obviously overmatches

that of others such as simulated annealing and genetic
algorithm. However, further simulated calculation
indicates that the effect of this algorithm is very
prominent when the searching space is small, but not
satisfied when big. So literature [4] puts forward
Mutative Scale Chaos Optimization Algorithm. Its
characteristics are as follows:

According to the search course, constantly shrinks
the searching space of optimization variable.

According to the search course, constantly alters
the regulation parameter of the second search.

The simulation calculation of several usual
complicated test function shows that the algorithm
overmatches that of literature [3].

Aiming at the problem existed in formula (1),
Mutative Scale Chaos Optimization Algorithm’s basic
steps are as follows:

Step1 Algorithm initializing: if k=1, 1k ′ = ,
xi(k)=xi(0), *

ix =xi(0), f*=f(0), ai(k ′)=ai, bi(k ′)=bi.
Step2 Maps the chaos variable to optimization

variable’s value interval, and searches according to
common chaos optimization algorithm; order k=k+1,
xi(k)=4xi(k)(1-xi(k)) until f* holds the line in a certain
steps.

Step3 Alters the search scale of chaos variable.
Where, regulation parameter C (0, 0.5)∈ , *

imx is the
current optimal solution.

Step4 Reverts the optimization variable.
*
ix = *

imx -ai(k ′ +1)bi(k ′ +1)-ai(k ′ +1)
Repeats the chaos search from step2 to step4 with

new chaos variable yi(k)=(1-A) *
ix +Axi(k) (A is the

smaller one); order k ′ = k ′ +1 until f* holds the line in
a certain steps.

Step5 Ends after repeating the process of step3
and step4 for some times. Here, *

imx is the optimal
variable and f* is the optimal solution, obtained from
the algorithm.

3. Mutative scale chaos quantum
genetic algorithm (MSCQGA)

Improving Quantum Genetic Algorithm using
Mutative Scale Chaos optimization strategy, there are
four steps:

Step1 Initializing colony.
Generates initial colony 1 2() { , ,..., }t t t

nP t p p p= ,
where n is the size of the colony, and (1, 2,...,)t

jp j n=
is one of the colony’s t generation
units, 1 2 1 2[, ,..., , , ,...,]t t t t t t t

j m mp α α α β β β= . m is the
count of quantum bit, the length of quantum
chromosome. When initializing, 1/ 2α β= = , which
stands for linear summation in equal odds.

Step2 Completes a generic operation according to
standard generic algorithm [5]-[6], and obtains more
excellent colony.

S1 Constructs R(t)={at
1,…,at

n} according to
condition of the probability breadth value selected
where at

j is a binary string whose length is m.
The generation mode is generating a random

datum r in [0, 1]. If 2
ia >r, it is 1. Or it is 0.

S2 Evaluates each individual of R(t), and keeps
down the optimal individual. If ending conditions are
satisfied, the algorithm ends, or continues.

S3 Judges if the colony needs alter. If it needs,
returns to S5, or continues the algorithm.

S4 Be replaced with proper quantum gate, and
gets new probability breadth.

S5 Order t=t+1, and returns to S1 to continue.
Step3 Picks out the unit whose value is more

adaptive in Step2, and leads the colony fast evolve.
Step4 Repeats Step2 and Step3 until the ending

conditions are satisfied, and that’s all.

4. Example analyzing
Process optimization calculation with the several
following test function using the MSCQGA given in
this paper to check up its performances, which are
compared with that of QGA and GA. Table 1 to Table
4 shows the result. All functions used only have one
global optimal solution, but maybe have several local
minimums.

F1= ()
4

2 2 2 21
1 1 1 2 2 24 2.1 4 4

3
x

x x x x x x
⎛ ⎞

− + + + − +⎜ ⎟⎜ ⎟
⎝ ⎠

,

1 21 , 1x x− ≤ ≤ , () () ()2 1
2 sin 2 sin 4g x x xπ π= −

F2=
2

2
1 1 12 2

5.1 5 16 10 1 cos 10
84

x x x x
π ππ

⎛ ⎞ ⎛ ⎞− + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

,

1 25 10,0 15x x− ≤ ≤ ≤ ≤

F3= () ()
2 22

1 2 1100 1x x x− + − , 2.048 2.048ix− ≤ ≤ ,

i=1,2

F4= [()2 2

1 1 2 1 2 21 19 14 3 14 6 3x x x x x x+ − + − + +

()] [()2 2
1 2 1 21 30 2 3x x x x⋅+ + + −

2 2
1 1 2 1 2 218 32 12 48 36 27()]x x x x x x− + + − + ,

2 2ix− ≤ ≤ , i=1,2
summation GA
 Optimal

value
Average
value

Mean-
variance

50 -6.032 -6.0300 0.020

100 -6.032 -6.0300 0.019

150 -6.032 -6.0319 0.016

200 -6.032 -6.0325 0.014
(a)

summation QGA
 Optimal

value
Average
value

Mean-
variance

50 -6.032 -6.0298 0.030
100 -6.032 -6.0300 0.019
150 -6.032 -6.0322 0.015
200 -6.032 -6.0326 0.012

(b)
summation MSCQGA
 Optimal

value
Average
value

Mean-
variance

50 -6.032 -6.0300 0.020
100 -6.032 -6.0315 0.015
150 -6.032 -6.0323 0.013
200 -6.032 -6.0308 0.010

(c)
Table1: Test result of optimizing F1.

summation GA
 Optimal

value
Average
value

Mean-
variance

50 0.3979 0.4073 0.0165
100 0.3979 0.4040 0.0108
150 0.3979 0.4030 0.0094
200 0.3979 0.4015 0.0080

(a)
summation QGA
 Optimal

value
Average
value

Mean-
variance

50 0.3979 0.4070 0.0160
100 0.3979 0.4035 0.0110
150 0.3979 0.4020 0.0090
200 0.3979 0.4014 0.0082

(b)
summation MSCQGA
 Optimal

value
Average
value

Mean-
variance

50 0.3979 0.4071 0.0163
100 0.3979 0.4036 0.0112
150 0.3979 0.4019 0.0091
200 0.3979 0.4014 0.0081

(c)
Table2: Test result of optimizing F2.

summation GA
 Optimal

value
Average
value

Mean-
variance

50 0 0.0053 0.0024
100 0 0.0050 0.0020
150 0 0.0041 0.0018
200 0 0.0003 0.0009

(a)

summation QGA
 Optimal

value
Average
value

Mean-
variance

50 0 0.0010 0.0010
100 0 0.0093 0.0009
150 0 0.0080 0.0007
200 0 0.0004 0.0003

(b)
summation MSCQGA
 Optimal

value
Average
value

Mean-
variance

50 0 0.00014 0.0003
100 0 0.00009 0.0001
150 0 0.00003 0.0000
200 0 0.00003 0.0000

(c)
Table3: Test result of optimizing F3.

summation GA
 Optimal

value
Average
value

Mean-
variance

50 3.0000 3.010 0.0030
100 3.0000 3.009 0.0010
150 3.0000 3.007 0.0004
200 3.0000 3.007 0.0005

(a)
summation QGA
 Optimal

value
Average
value

Mean-
variance

50 3.0000 3.009 0.0011
100 3.0000 3.006 0.0009
150 3.0000 3.005 0.0009
200 3.0000 3.003 0.0004

(b)
summation MSCQGA
 Optimal

value
Average
value

Mean-
variance

50 3.0000 3.000100 0.0000
100 3.0000 3.000100 0.0000
150 3.0000 3.000063 0.0000
200 3.0000 3.000048 0.0000

(c)
Table4: Test result of optimizing F4.

Mutative Scale Chaos Quantum Genetic Algorithm
carries out search using its own rules of chaos variable,
constantly shrinks the search space in the process of
optimization, avoids local optimal solution and has
very high searching efficiency. It inducts mutative
scale chaos optimization algorithm to QGA not
changing the searching mechanism of quantum
generic algorithm, fastens the speed of the colony’s
evolvement, and greatly improves the performances of
QGA. This algorithm has the characteristics of fast
search speed, high calculation precision, simple
structure, and convenience. The simulation result
shows that the integrate performances of MSCQGA
are better than GA and QGA. It has a very wide
appliance foreground.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of China (Grant No. 60675030).

References
[1] A. Narayanan and M. Moore, Quantum inspired

genetic algorithm, Proc. of the International
Conference on Evolutionary Computation, pp.
61-66, 1996.

[2] G.X. Zhang, Y.J. Gu and L. Z. Hu, A novel
genetic algorithm and its application to digital
filter design, Proc. of the International
Conference on Intelligent Transportation
Systems, pp. 1600-1605, 2003.

[3] B. Li and W.S. Jiang, Chaos optimization
method and its application, Control Theory and
Applications, 14:613-615, 1997.

[4] T. Zhang, H.W. Wang and Z.C. Wang, Mutative
Scale chaotic optimization algorithm and its
application, Control and Decision, 14:285-288,
1999.

[5] S.Y. Yang, L.C. Jiao and F. Liu, The quantum
evolutionary algorithm, Engineering
Mathematics, 23:235-246, 2006.

[6] H.Y. Guo, Quantum genetic algorithm based on
chaotic optimization, Electronic Measurement
Technology, 29:14-18, 2006.

