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Abstract 
Aiming at the trouble of easy getting into local 
minimum in quantum genetic algorithm, this paper 
presents a new hybrid quantum genetic algorithm. 
Using the method of mutative scale chaos optimization 
strategy, chaotic search for optimization is 
implemented to the colony which has been processed 
one time with quantum genetic algorithm, which can 
lead rapid evolution of the colony. The method has 
advantages such as high searching efficiency, good 
computing precision and being convenient to use, etc. 
The test of typical function shows the performance of 
this kind of method is better than quantum genetic 
algorithm and genetic algorithm. 
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1. Introduction 
Genetic algorithm which possesses very strong robust 
and adjustability is a direct search method. Though 
genetic algorithm has shown a lot of its tremendous 
advantages, it also exposes some limits such as large 
calculation storage, not converging to global 
optimization by all means, losing the best 
chromosome in the colony and premature convergence 
in the process of evolution. To resolve these troubles, 
Narayanan presented Quantum Genetic Algorithm 
(QGA), which carries out colony updating by the 
method of combining quantum bit coding with binary 
coding, and effectively settles the troubles of 
premature convergence and losing the best 
chromosome in GA [1]-[2]. A mass of literature shows 
that QGA is a kind of efficient parallel algorithm. But 
it is easy to get in local minimum, which obviously 
has the defect of premature convergence. Chaos 
movement can non-repeatedly cover all state in a 
certain range, according to its own rules. Thus, 
optimizing search with chaos variable has, without 
question, more advantage than random search [3]. This 
paper gives a new chaos quantum genetic algorithm, 

Mutative Scale Chaos Quantum Genetic Algorithm 
(MSCQGA), composed with mutative scale chaos 
optimization strategy and quantum genetic algorithm. 
Its characteristic is: to perpetually shrink optimizing 
variable’s search space and regulation parameter, lead 
the colony to process a new turn evolution, and 
generate more advantageous optimal individual. 
Thereby, MSCQGA has improved the characteristic of 
QGA and effectively overcome the defects existed in 
QGA. The test of typical function shows that the 
performance of this kind of method is better than 
quantum genetic algorithm and genetic algorithm. 

2. Mutative scale chaos 
optimization algorithm 

2.1. Chaos optimization algorithm 
In a way, Optimization Algorithm is the best choose to 
discuss the decision making problem. Through proper 
math modeling, the decision making can be equal to 
the study of seeking the global minimum and 
maximum in the state space. If objective function of 
the continuous object which needs optimization can be 
expressed as follows: 

f*=f( *
ix )=minf(xi),     i=1, 2, …, n, xi [∈ ai, bi]   (1) 

Where, x is a decision making variable, a vector, 
whose dimension is equal to the number of the 
decision making parameters. f(x) is the math model 
and the objective function of the decision making 
problem. Chaos Optimization Algorithm is the usual 
method to resolve the problems like that.  

In the Chaos Optimization Algorithm, logistic 
map are normally used to describe it: 

1 (1 )n n nx x xμ+ = −                                              (2) 
Where, μ is the control parameter, which can not 

bigger than 4，so we choose μ=4. 
If 00 x 1≤ ≤ , n=0, 1, 2,…. When μ=4, the system 

above is completely in chaos state. If optimization 
object can be expressed by formula (1) and the 
variable dimension is m, Chaos Optimization 
Algorithm’s basic step usually is as follows: 



Step1. Algorithm initialization: respectively endue 
0x in formula (2) with m initial numerical value which 

only have tiny difference between them, note to avoid 
choosing several especial values such as 0, 0.25, 0.5, 
0.75 and 1, and get the count of m chaos variables with 
different track and gain the m numerical value xi,n by 
iterating for n times, where i=1, 2, …, m. 

Step2. If k=0，xi(0)= ci+dixi,n, ci, di are constants, 
which are respectively equal to translating parameter 
and flexing parameter, ensuring that chaotic variable’s 
changing range flexes the relevant optimization 
variable of formula (1) in its value rang, and substitute 
it into formula (1) to calculate the performance index 
f(x(0)) (following simply marked as f(0) ), then order 

*
ix = xi(0), f*=f(0). 

Step3. k:=k+1. With the following carrier wave 
method, substitutes the selected m chaos variable xi,n+k 
respectively into m numeral optimization variables in 
formula (1) using the formula (3), and makes it 
become the chaos variable xi(k): 

xi(k)=ci+dixi,n+k                                                  (3) 
Where, the meanings of ci, di  are equal to them in 

step2. 
Step4. Processes iterative search with chaos 

variable. Substitutes xi(k) into formula (1) to calculate 
the performance index f(k). 

If f(k)≥f*  then  f*=f(k), *
ix =xi(k)  Else  if  f(k)<f*  

then abandons xi(k). 
If f* are remained through some steps search, 

returns to step1 and repeatedly calculates to gain m 
numeral chaos variable xi,n, and orders 0k ′ = ,then 
returns to step5. Or, returns to step3. 

Step5. Makes use of formula (4) to process the 
second carrier wave. 

*
,( ) ( 0.5)i i i i n kx k x xα +′ = + −                             (4) 

Where, ( )ix k ′ is relative to the chaos variable of 
formula (1) in the less feasible field’s ergodicity 
interval. Where, αi is regulation parameter, *

ix  is the 
optimal solution in the coarse search stage. 

Step6. Substitutes ( )ix k ′  into formula (2), 
continues to search by iterating, and calculates the 
relevant performance index ( )f k ′ . 

If *( )f k f′ ≥  then f*= ( )f k ′ , *
ix = ( )ix k ′  

Else if ( )f k ′ <f*, then abandons ( )ix k ′ . 
: 1k k′ ′= + . 

Step7. If it satisfies the ending condition, stop 
searching, and outputs the optimal solution *

ix  , *f . 
Or, returns to step5.  

2.2. Mutative scale chaos 
optimization algorithm 

The simulation result of abundant optimization 
examples shows that the optimizing efficiency of 
chaos optimization algorithm obviously overmatches 

that of others such as simulated annealing and genetic 
algorithm. However, further simulated calculation 
indicates that the effect of this algorithm is very 
prominent when the searching space is small, but not 
satisfied when big. So literature [4] puts forward 
Mutative Scale Chaos Optimization Algorithm. Its 
characteristics are as follows: 

According to the search course, constantly shrinks 
the searching space of optimization variable.  

According to the search course, constantly alters 
the regulation parameter of the second search. 

The simulation calculation of several usual 
complicated test function shows that the algorithm 
overmatches that of literature [3]. 

Aiming at the problem existed in formula (1), 
Mutative Scale Chaos Optimization Algorithm’s basic 
steps are as follows: 

Step1 Algorithm initializing: if k=1, 1k ′ = , 
xi(k)=xi(0), *

ix =xi(0), f*=f(0), ai( k ′ )=ai, bi( k ′ )=bi. 
Step2 Maps the chaos variable to optimization 

variable’s value interval, and searches according to 
common chaos optimization algorithm; order k=k+1, 
xi(k)=4xi(k)(1-xi(k)) until f* holds the line in a certain 
steps. 

Step3 Alters the search scale of chaos variable. 
Where, regulation parameter C (0, 0.5)∈ , *

imx  is the 
current optimal solution. 

Step4  Reverts the optimization variable. 
*
ix = *

imx -ai( k ′ +1)bi( k ′ +1)-ai( k ′ +1) 
Repeats the chaos search from step2 to step4 with 

new chaos variable yi(k)=(1-A) *
ix +Axi(k) (A is the 

smaller one ); order k ′ = k ′ +1 until f* holds the line in 
a certain steps. 

Step5 Ends after repeating the process of step3 
and step4 for some times. Here, *

imx  is the optimal 
variable and f* is the optimal solution, obtained from 
the algorithm. 

3. Mutative scale chaos quantum 
genetic algorithm (MSCQGA) 

Improving Quantum Genetic Algorithm using 
Mutative Scale Chaos optimization strategy, there are 
four steps: 

Step1 Initializing colony. 
Generates initial colony 1 2( ) { , ,..., }t t t

nP t p p p= , 
where n is the size of the colony, and ( 1, 2,..., )t

jp j n=  
is one of the colony’s t generation 
units, 1 2 1 2[ , ,..., , , ,..., ]t t t t t t t

j m mp α α α β β β= . m is the 
count of quantum bit, the length of quantum 
chromosome. When initializing, 1/ 2α β= = , which 
stands for linear summation in equal odds. 

Step2 Completes a generic operation according to 
standard generic algorithm [5]-[6], and obtains more 
excellent colony. 



S1 Constructs R(t)={at
1,…,at

n} according to 
condition of the probability breadth value selected 
where at

j  is a binary string whose length is m. 
The generation mode is generating a random 

datum r in [0, 1]. If 2
ia >r, it is 1. Or it is 0.  

S2 Evaluates each individual of R(t), and keeps 
down the optimal individual. If ending conditions are 
satisfied, the algorithm ends, or continues. 

S3 Judges if the colony needs alter. If it needs, 
returns to S5, or continues the algorithm. 

S4 Be replaced with proper quantum gate, and 
gets new probability breadth. 

S5 Order t=t+1, and returns to S1 to continue. 
Step3 Picks out the unit whose value is more 

adaptive in Step2, and leads the colony fast evolve. 
Step4 Repeats Step2 and Step3 until the ending 

conditions are satisfied, and that’s all. 

4. Example analyzing 
Process optimization calculation with the several 
following test function using the MSCQGA given in 
this paper to check up its performances, which are 
compared with that of QGA and GA. Table 1 to Table 
4 shows the result. All functions used only have one 
global optimal solution, but maybe have several local 
minimums. 

F1= ( )
4

2 2 2 21
1 1 1 2 2 24 2.1 4 4

3
x

x x x x x x
⎛ ⎞

− + + + − +⎜ ⎟⎜ ⎟
⎝ ⎠

, 

1 21 , 1x x− ≤ ≤ , ( ) ( ) ( )2 1
2 sin 2 sin 4g x x xπ π= −  

 

F2=
2

2
1 1 12 2

5.1 5 16 10 1 cos 10
84

x x x x
π ππ

⎛ ⎞ ⎛ ⎞− + − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

1 25 10,0 15x x− ≤ ≤ ≤ ≤  
 

F3= ( ) ( )
2 22

1 2 1100 1x x x− + − ,    2.048 2.048ix− ≤ ≤ ,  

i=1,2 
 
F4= [ ( )2 2

1 1 2 1 2 21 19 14 3 14 6 3x x x x x x+ − + − + +   

( ) ] [ ( )2 2
1 2 1 21 30 2 3x x x x⋅+ + + −

2 2
1 1 2 1 2 218 32 12 48 36 27( )]x x x x x x− + + − + , 

2 2ix− ≤ ≤ , i=1,2 
summation GA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 -6.032 -6.0300 0.020 

100 -6.032 -6.0300 0.019 

150 -6.032 -6.0319 0.016 

200 -6.032 -6.0325 0.014 
(a) 

 
summation QGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 -6.032 -6.0298 0.030 
100 -6.032 -6.0300 0.019 
150 -6.032 -6.0322 0.015 
200 -6.032 -6.0326 0.012 

(b) 
summation MSCQGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 -6.032 -6.0300 0.020 
100 -6.032 -6.0315 0.015 
150 -6.032 -6.0323 0.013 
200 -6.032 -6.0308 0.010 

(c) 
Table1: Test result of optimizing F1. 

 
summation GA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0.3979 0.4073 0.0165 
100 0.3979 0.4040 0.0108 
150 0.3979 0.4030 0.0094 
200 0.3979 0.4015 0.0080 

(a) 
summation QGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0.3979 0.4070 0.0160 
100 0.3979 0.4035 0.0110 
150 0.3979 0.4020 0.0090 
200 0.3979 0.4014 0.0082 

(b) 
summation MSCQGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0.3979 0.4071 0.0163 
100 0.3979 0.4036 0.0112 
150 0.3979 0.4019 0.0091 
200 0.3979 0.4014 0.0081 

(c) 
Table2: Test result of optimizing F2. 

 
summation GA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0 0.0053 0.0024 
100 0 0.0050 0.0020 
150 0 0.0041 0.0018 
200 0 0.0003 0.0009 

(a) 
 



 
summation QGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0 0.0010 0.0010 
100 0 0.0093 0.0009 
150 0 0.0080 0.0007 
200 0 0.0004 0.0003 

(b) 
summation MSCQGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 0 0.00014 0.0003 
100 0 0.00009 0.0001 
150 0 0.00003 0.0000 
200 0 0.00003 0.0000 

(c) 
Table3: Test result of optimizing F3. 

 
summation GA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 3.0000 3.010 0.0030 
100 3.0000 3.009 0.0010 
150 3.0000 3.007 0.0004 
200 3.0000 3.007 0.0005 

(a) 
summation QGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 3.0000 3.009 0.0011 
100 3.0000 3.006 0.0009 
150 3.0000 3.005 0.0009 
200 3.0000 3.003 0.0004 

(b) 
summation MSCQGA 
 Optimal 

value 
Average 
value 

Mean-
variance

50 3.0000 3.000100 0.0000 
100 3.0000 3.000100 0.0000 
150 3.0000 3.000063 0.0000 
200 3.0000 3.000048 0.0000 

(c) 
Table4: Test result of optimizing F4. 

Mutative Scale Chaos Quantum Genetic Algorithm 
carries out search using its own rules of chaos variable, 
constantly shrinks the search space in the process of 
optimization, avoids local optimal solution and has 
very high searching efficiency. It inducts mutative 
scale chaos optimization algorithm to QGA not 
changing the searching mechanism of quantum 
generic algorithm, fastens the speed of the colony’s 
evolvement, and greatly improves the performances of 
QGA. This algorithm has the characteristics of fast 
search speed, high calculation precision, simple 
structure, and convenience. The simulation result 
shows that the integrate performances of MSCQGA 
are better than GA and QGA. It has a very wide 
appliance foreground. 
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