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Abstract 
Correlation analysis is a basic problem in the field of 
data stream mining. In this paper we propose a new 
method based on Boolean representation for lag 
correlation analysis among multiple data streams. The 
raw stream sequence is transformed into the Boolean 
sequence, and the lags in any correlation pairs of 
sequences can be easily gained by simple bit 
operations. Compared with pair-wise approach, this 
proposed method can get the exact result more 
efficiently by reducing huge calculation in very limited 
space. Both the theory analysis and the experimental 
evaluations show that this method has great 
computation complexity with high accuracy. 
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1. Introduciton 
Data streams have received considerable attention in 
various communities due to several important 
applications, such as network analysis, sensor network 
monitoring, financial data analysis, and scientific data 
processing. In all these situations, huge amount of data 
arrive at high rates, which makes traditional database 
systems prohibitively slow.  

Many recent efforts concentrate on summarization 
and pattern discovery in data streams[1][2][3][4][6][8][9]. 
Here we focus on fast lag correlation analysis among 
multiple data streams. In practice lag correlation are 
frequent and ubiquitous, for example, a decrease of a 
certain stock price typically precedes increases of some 
others by a few minutes. Lots of data streams in many 
applications are correlated with an unknown lag. Our 
goal is to monitor thousands of data streams and 
determine all pairs of streams that have lag correlations. 
Furthermore, we want to give the lag for each 
correlation pair effectively and efficiently. 

Correlation analysis over a large number of 
streams is a challenging task because the data stream is 
always burst and endless. Lots of work has been done 
about how to monitor thousands of data 
streams[5][6][7][8]. But all of these methods are based on 

complex transformation which transforms the raw 
stream sequence into simple summarization, then 
computes the correlation by pair-wise way which leads 
to tremendous calculation costs because most pairs of 
sequences may have no correlations at all.  

We propose a novel approach based on Boolean 
cross-correlation (BCC) method to discover the lag 
correlations among multiple data streams. The raw 
stream sequence is firstly transformed into the Boolean 
sequence which is just a bit sequence, and the 
correlation results can be easily gained by simple bit 
operations. With huge amount of data streams, this 
method can quickly allocate the correlation pairs of 
sequences as well as the lags in an efficient way by 
reducing huge calculation in a little space. We can 
demonstrate the correctness of this approach by 
sufficient theory analysis. The experimental 
evaluations show that our method has great 
computation performance with high accuracy 

The rest of the paper is organized as follows: 
Section 2 introduces necessary definitions and 
notations. Section 3 presents our proposed method for 
lag correlation analysis. Section 4 gives our theoretical 
analysis for this method. Section 5 reviews the results 
of the experiments, which clearly show the 
effectiveness of this approach. Section 6 is a brief 
conclusion. 

2. Preliminaries 
Data streams can be regarded as continuous, infinite 
sequences. In practice, we just compare the recent 
values by sliding window model.  Let X be a stream 
sequence {x1,…,xt,…,xn}, where xn is the most recent 
value, and the  window’s length is n. As time goes by, 
the values in the sliding window will be updated 
continuously. Our goal is to monitor m numerical 
sequences, X1, X2,…,Xm, and  to determine all the pairs 
of sequences that have a lag correlation and report the 
lag value. 

We will adopt Pearson formula as the criteria for 
the lag correlation. 

Definition 1 (CCF).Given two stream sequences 
X and Y are {x1,…,xt,…,xn} and {y1,…,yt,…,yn} 
respectively, then the cross-correlation function (CCF) 
of these two sequences is:  
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Where ρ(k) denotes the correlation coefficient, when  Y 
is delayed by k. The symmetric case when Y is delayed 
can be handled the same. We restrict the maximum lag 
k to be n/2. 
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Fig 1: Example of lag correlation. 

 

Definition 2 (Lag correlation). Two sequences X 
and Y have a lag correlation of k, if ρ(k) is above a 
threshold ε, and is actually the earliest local maximum 
which is not multiples of any others. 

From Fig 1 we can see that two sequences have a 
lag correlation when k=55, the CCF curve may have 
multiple local maximum for periodical reasons, such as 
k=176, clearly, the earliest lag the most important one. 

 

Table 1:  Symbols and Definitions. 
 

Naïve method to compute the CCF has huge 
calculation cost, there will be O(n2) time to just 
compare two sequences, what is worse, the time 
complexity will jump to O(m2n2) for m sequences. In 
stream environment, it’s unrealistic for this pair-wise 

method to analyze the correlations. In next section, we 
will propose a novel Boolean cross-correlation method 
to solve this problem efficiently. 

3. Boolean cross-correlation 
Boolean sequences can also be considered as a binary 
number. Each value in a Boolean sequence can only be 
0 or 1. Boolean representation occupies less storage 
memory because one byte in computer contains only 8 
bits, Boolean representation provides excellent time 
and space complexity for the data streams processing. 

3.1. Boolean representation 
For the purpose of accommodating the feature of data 
streams, we give a novel approach which transforms 
the raw sequence into a Boolean sequence based on [4]. 
Our proposed representation works by replacing each 
real valued data with a single bit, which means each 
value in sequences can only be 0 or 1.  
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Fig 2: Boolean representation. 

Definition 3 (Boolean sequence). Let X: 
{x1,…,xt,…,xn} be a stream sequence with the length of 
n, then the corresponding Boolean sequence W 
is{w1,…,wt,…,wn}, where 
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From Fig 2 we know that the Boolean sequences 
can be easily gained by comparison operation with the 
mean values of the raw sequences. We can intuitively 
think that the Boolean sequences can reflect the main 
trends. Next, we’ll give the definition of Boolean 
cross-correlation function based on Boolean 
representation. 

Symbol Definition 
n Length of sequence 
m Number of sequences 
k Lag 
ρ Correlation coefficient 
δ Boolean correlation coefficient 
ε Correlation threshold 
ξ Boolean correlation threshold 
xt Value of a sequence X at time t=1,…, n



Definition 4 (BCCF).Given two Boolean 
sequences W and V are {w1,…,wt,…,wn} and 
{v1,…,vt,…,vn} respectively, then the Boolean cross-
correlation function (BCCF) of these two sequences is: 
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where ⊕ is XOR operation, δ(k) denotes the 
correlation coefficient, when  V is delayed by k. 

Definition 5 (Lag correlation). Given two Boolean 
sequences W and V, δ(k) is their Boolean correlation 
coefficient and ξ is a Boolean correlation threshold, 
then W and V have a lag correlation of k, if δ(k)>ξ(or 
δ(k)<1-ξ) and δ(k) is actually the earliest local 
maximum which is not multiples of any others, where 
δ(k)<1-ξ denotes the negative correlation. 

Without complex pair-wise comparison of raw 
streams sequences, we just need to operate on the 
corresponding Boolean sequences with simple Boolean 
computations by equation (3). 
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Fig.3:  Comparison of BCCF and CCF. 

From Fig3, we can see that BCCF curve has 
almost the same shape with the CCF curve. The lag 
time detected by BCCF is approximate the according 
point discovered by CCF. In next section, we will give 
a theoretical demonstration that BCCF can reflect 
almost the same trends as the CCF,  we can simply get  
lag correlation results just by simple BCCF. 

3.2. The algorithm of BCC 
Algorithm 1: BooleanTrans /*Transform the raw 
sequence into Boolean sequence*/ 

input: raw sequence X: (x1,…, xt ,…, xn), mean 
value : x ; 

output: Boolean sequence W:(w1,…, wt ,…,wn). 

for t=1 to n do 
  {   if(xt > x ) 
           wt=1 
       else 
          wt=0} 
       return W} 

Algorithm2: BCC 
input: stream sequences set D (X1, X2, …, XM), ξ 

(Boolean correlation threshold); 
output: correlation set C (correlation pairs and the 

lags). 
① for (each sequence Xi in D) do 
② {   compute the mean value ix ; 

③         Wi=BooleanTrans (Xi , ix ); 
④         add Wi into the Boolean sequence set B; } 
⑤   for (for each pair (Wi , Wj) in B)do 
⑥     {  for k=1 to n/2 do 
⑦          {δk=ComputeBCCF (Wi , Wj ,k); } 

/*compute the Boolean cross-
correlation function*/ 

⑧  for k=1 to n/2 do 
⑨    { if ((δk>ξ or δk<1-ξ) and  
               ((δk<δk-1 and δk<δk+1) or  

(δk>δk-1 and δk>δk+1))) 
/* the local extremum */ 

⑩  add (Xi ,Xj ,k) into C;｝ 
        output C 

4. Theoretical analysis 

4.1. Precision 
In this section we give a theoretical analysis to show 
the accuracy of the BCC method. Again, we focus on 
two sequences X and Y. To simplify the discussion 
without loss of generality, we assume the given 
sequences have normal distribution. 

Lemma1. Let{Xt},{Yt} be both standard normal 
distribution sequences, we have E(Xt)=E(Yt)=0, 
D(Xt)= D(Yt)=1, {Wt} and {Vt} are Boolean sequences 
of {Xt} and {Yt} respectively, assume φk=P(Wt-k=1| 
Vt=1), then the Pearson correlation coefficient of {Wt} 
and {Vt}: 
                               ρk= 2φk-1 

Proof. From the symmetry of the standard normal 
distribution, we know that: 
P(Wt=1)=P(Wt=0)=0.5, E(Wt) =0.5, 
D(Wt)= E(Wt

2)- [E(Wt)]2=0.5-0.25=0.25, so 
P(Vt=1), E(Vt)=0.5, D(Vt)=0.25,  

E(Wt-kVt)= P(Vt=1)P(Wt-k=1| Vt=1)= 1
2 kϕ   



Then, we can get the covariance of {Wt-k} and {Vt}: 
COV(Wt-k，Vt)=E[(Wt-k-0.5)(Vt-0.5)] 

=E(Wt-k Vt)-0.25=
1 1
2 4kϕ −  ，thus 

( , ) ( ) ( )k t tt k t kCOV W V D W D Vρ − −=  =2φk-1.              □ 

Theorem 1. Let {Xt},{Yt} be both standard normal 
distribution sequences, E(Xt)=E(Yt)=0, D(Xt)= 
D(Yt)=1， {Wt} and {Vt} are Boolean sequences of {Xt} 
and {Yt}, let kρ  be the Pearson correlation coefficient 

of {Xt} and {Yt}, and t tWV
kρ be the Pearson correlation 

coefficient of {Wt}and{Vt}, then: 
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From lemma 1, we can get:   
22 1 4 ( ) 1 arcsint tW V
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From theorem1, we know that t tW V
kρ has the same 

monotony interval with kρ , and kρ has a linear relation 

with kϕ , we can get the lag correlation from the kρ  as 
well as kϕ  because they have the same trends. Next, 
we will give a novel method to calculate the 
approximate value of kρ . 

Theorem 2. Let {Xt},{Yt}(t=1,2,…n) be finite 
length standard normal distribution sequences, {Wt} 
and{Vt} are Boolean sequences of {Xt} and {Yt} 
respectively, φk=P(Wt-k=1| Vt=1), k denotes the lag 
value, at an arbitrary time t, let Wt=wt, Vt=vt, then the 
maximum likelihood of φk: 
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since φk=P(Wt-k=1|Vt=1)＝P(Wt-k=0|Vt=0), 
1- φk= P(Wt-k=1| Vt=0)＝P(Wt-k=0| Vt=1), 

Then, the likelihood function of φ:  
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Each item in Boolean sequence is just a bit. We 
can replace the algebra calculation with simple bit 
operation, to improve the effectiveness of the 
calculation. Equation (5) can be transformed as follows: 
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We can see that ˆ kϕ  is just the Boolean cross-
correlation coefficient δ(k). 

From theorem 1 and theorem 2, we can get: 
1ˆ ˆ ˆ ˆ ˆ2 1, sin( ) sin ( )

2 2
t t t tW V W V

k k k k k
πρ ϕ ρ ρ π ϕ= − = = −  

thus,    1ˆ sin ( )
2k kρ π δ= −                                   (6) 

Above all, cross-correlation function has the same 
trend with Boolean cross-correlation coefficient with 
infinite length sequences. We need not compute the 
concrete value of CCF, but get the lag correlation 
result by quickly allocating the earliest maximum in 
BCCF curve. 

4.2. Complexity 
Boolean sequences can be considered as a binary 
number which occupies less storage memory because 



one byte in computer contains only 8 bits, from [4] we 
know that this method can yield compression ratios 
from 32:1 to better than 1000:1.So we can get 
unbelievable space complexity which is far below 
O(logn). And above all, each item in Boolean 
sequences is just a bit and bit operations are very 
efficient and effective for data streams. We just need to 
replace the real value algebraic calculations with 
simple bit operations to reduce time complexity.   

The main cost of BCC is the transformation to 
Boolean sequences. The procedure from real value to 
bits just require O(mn) time for m sequences with each 
length of n. Then we need (m-1)2n/2 times XOR 
operation between binary sequences, and the time 
requirement for efficient bit operations can be 
neglected. Moreover, we can also speed up the 
operation to sum the bits. Any algorithm to count the 
bits is O(n). However, we can improve the constant 
terms in the time complexity function by using shift 
operators to evaluate value of each eight or sixteen bit 

sequence, then using a lookup table to find the number. 
This mechanism makes the calculation approximately 
five to ten times faster than ordinary counting.  

Braid[6] need O(1) time to analyze the lag 
correlation between two sequences, but it also need to 
compute the results by pair-wise way among multiple 
streams which leads to tremendous calculation costs 
because most pairs of sequences may have no 
correlations at all. But the pair-wise way for BCC is 
just simple bit operations which quickly allocate the 
correlation pairs effectively with high accuracy. 

5. Experiments evaluation 
To evaluate the effectiveness of BCC method, we 
performed experiments on real and synthetic datasets 
on a 2.4GHz Pentium 4 PC with 512 MB of main 
memory.  
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Fig 4: Comparison of BCCF and CCF.

5.1. Precision 
We compared BCC method with the implementation 
of naïve CCF. The datasets used are the following: 

 Synthetic: the data set consists of two sequences 
of length n=1000, each sequence is a mixture of 
sine waves of different frequencies. 

 Sunspots: number of sunspots per day. We choose 
two intervals form the dataset, each length 
n=6000. 

 TAO: this dataset (Tropical Atmosphere Ocean) 
contains the air temperature of two sites in pacific 
from 2004 to 2006, obtained from the Pacific 
Marine Environmental Laboratory. 
(http://www.pmal.noaa.gov/tao) 

Fig 4 shows the estimation of our proposed 
method for all data sets. In these figs, ’CCF’, ’BCCF’ 
denote the cross-correlation function curve and 



Boolean cross-correlation function curve respectively. 
We can see that BCCF curve perfectly approximates 
the main trends of CCF curve for all the datasets. We 
can easily capture the local maximum in the BCCF 
curve which perfectly corresponds to lag correlation 
points shown in CCF.  
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Table 2:.Precision of BCC. 

5.2. Performance 
We theoretically discussed the complexity of BCC is 
Section 4.2, we did an empirical study of the 
computation time. First, we used the datasets in 
Section 5.1 to compare the execution time of BCC 
with exact pair-wise method. For arbitrary two 

sequences, BCC need O(n) time compared with O(n2) 
for naive method. As shown in Fig 5, the execution 
time of exact method increases in a quadratic way as 
the sequence length continues to grow.  However, 
instead of the O(n2) that the naïve implementation 
requires,  BCC keep an approximate linear trend 
which achieve a dramatic reduction in computation 
time. 
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We also compared BCC with Braid[6] with the 
same experimental environment. The datasets contain 
two parts: 1000 sequences generated by random walk 
model and financial sequences consist of the open 
prices of 500 stocks in China from 2002 to 2006, with 
each length n= 2500. 
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Fig.7: Execution time of BCC for random walk sequence 

Table 2 shows the precision of the lag correlations 
captured by BCCF in all the datasets. We assume the 
lag correlations captured by CCF is the exact value 
and the precision will be obtained by making a 
comparison. The results are so perfect that all the 
values are above 98%. 

Lag 
correlation 

 
Datasets 

CCF BCCF 

 
Precision 

(%) 

Synthetic 
Sunspots 

TAO 

127 
855 
119 

128 
864 
119 

99.2 
98.9 
100 



From Fig 6, we can see that Braid has great 
computation time when the number of sequences is 
small because it just need O(1) time. However, as the 
sequence number grows up, the execution time of 
Braid has a quadratic increase for pair-wise way. 
Meanwhile, BCC also keep a linear time because the 
main costs come from the transformation to the 
Boolean sequence shown in Fig 7, and the pair-wise 
comparison cost is just simple bit operations which can 
be neglected. 

6. Conclusion 
In this paper, we propose a novel approach based on 
Boolean cross-correlation (BCC) method to discover 
the lag correlations of multi-stream time sequences. 
Each raw stream sequence is firstly transformed into 
the Boolean sequence which is just a binary number, 
and the lags of any correlation pairs can be easily 
gained by simple bit operations. Compared with 
traditional pair-wise approach, this method can get the 
quickly allocate the exact result more efficiently by 
reducing huge calculation in very limited space 
especially when the number of streams is very large. 
Both the theory analysis and the experimental 
evaluations show that this algorithm has great 
computation complexity with high accuracy. 
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