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Abstract

A class of Cohen-Grossberg neural networks with
distributed delays are considered. By using the co-
incidence degree theorem and differential inequality
techniques, sufficient conditions for the existence
and exponential stability of the periodic solutions
are established, Without assuming the bounded-
ness, monotonicity, and differentiability of activa-
tion functions and any symmetry of interconnec-
tions. The results of this paper are new.
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1. Introduction

Cohen and Grossberg neural networks (CGNNs)
model, first introduced by Cohen and Grossberg
in [1], have been widely investigated for the sake
of theoretical interest as well as application con-
siderations. Many good results have already been
obtained by some authors in [2]-[15], and have been
widely applied within various engineering and sci-
entific fields such as neuro-biology, population biol-
ogy, and computing technology. But to the best
of our knowledge, the existing literature dealing
with unbounded activation functions and distrib-
uted delays appears to be scarce. In fact, neural
networks usually has a spatial extent due to the
presence of an amount of parallel pathways with a
variety of axon sizes and lengths. Thus, the de-
lays in artificial neural networks are usually contin-
uously distributed [14]-[20]. Moreover, in many ap-
plications, the properties of periodic oscillatory so-
lutions and global exponential stability are of great
interest. For example, the human brain is in a peri-
odic oscillatory or chaos state, hence it is of prime
importance to study periodic oscillation, global ex-
ponential stability and chaos phenomenon of neural

networks. This motivates us consider the following
CGNNs with distributed delays

ai(t) = —ai(t, 2 (1)) [bi(t, (1)) — Z cij (1) f(z;(1))

n

=Y dur( " Ky () (¢ — udu) + L(2))

j=1
i=1,2,,n, (1.1)

where a; and b; are continuous functions on RZ,
fjscij,di; and I; are continuous functions on R; n
corresponds to the number of units in a neural net-
work; z;(t) denotes the potential (or voltage) of cell
i at time t; a; represents an amplification function;
b; is an appropriately behaved function; ¢;;(¢) and
d;;(t) denote the strengths of connectivity between
cell 4 and j at time t respectively. The activation
function f;(-) shows how the ith neuron reacts to
the input; K;;(t) > 0 corresponds to the time de-
lay required in processing and transmitting a sig-
nal from the jth cell to the ith cell at time ¢, and
I;(t) denotes the ith component of an external in-
put source introduced from outside the network to
cell ¢ at time ¢, 7,7 =1,2,...,n.

Throughout this paper, it will be assumed that

(H1) ¢j,dij,I; © R — R are periodic func-
tions with a common period w(> 0), a; and b;
are w—periodic in the first variable, where i, =
1,2,...n.

(Hs) Fori = 1,2,...,n, there exist positive con-
stants a; and @; such that

a; < ai(t,u) <a;, forall t,ueR.

(Hs3) For i =1,2,...,n, there exist positive con-
stants b; and b; such that
0 <ub;(t,u), b;|u|<|bi(t,u)|<bi|ul,

for all t,u € R.



(Hy) For i = 1,2, ..., n, there exist non-negative
constants L; such that

| fi(w)— f;(v) |<Lj|u—v]| foral w,veR.

(Ts) For each i € {1, 2, ---,n},j €
{1, 2, ---,n}, the delay kernels K;; : [0,00) — R
are continuous, integrable and there exit nonnega-
tive constants k;; such that

| 1K)l < b
0

(Ts) For each i € {1, 2, ---,n},j €
{1, 2, ---,n}, there exists a constant Ay such that

/ | K5 (s)] exp(Ags)ds < +00.
0

For convenience, we introduce some notations.
We can choose constants 7, ¢;;, d;; and I; such that

ﬁ'jﬁ&@ﬁﬂ@u(t)l, dij = o |dij ()],
I, = I;(t)], 1.2
téﬂﬁ’iﬂ (t)] (1.2)

We will use = (z1, @2, -+ ,7,)T € R" to de-
note a column vector, in which the symbol ()
denotes the transpose of a vector. For matrix
D = (d;j)nxn, DT denotes the transpose of D, and
E,, denotes the identity matrix of size n. A matrix
or vector D > 0 means that all entries of D are
greater than or equal to zero. D > 0 can be de-
fined similarly. For matrices or vectors D and FE,
D > E (resp. D > E) means that D—FE > 0 (resp.
D —E >0). For V(t) € C((a, +00), R), let

DV (t) = limsup w
h—0—
D_V(#) = liminf L¢P = V()

lim inf A ,Vt € (a, +00).

As wusual, we introduce the phase space
C((—o0, 0]; R™) as a Banach space of continuous
mappings from (—oo, 0] to R™ equipped with the
supremum norm defined by

= max su (T
loll = max sup_lei(t)]
for all ¢ = (o1(t), @a(t), o) €

C((=o0, 0]; R").
The initial conditions associated with system
(1.1) are of the form

xi(8) = ¢i(s),s € (—o0, 0], i=1,2,--- ,n, (1.3)

where ¢ = s on(t)T €

(p1(t), p2(t), -

C((—o0, O; B").

Definition 1. Let Z*(t) = (a7 (t), x5(t), - -,
2% (t))T be an w—periodic solution of system (1.1)
with initial value ¢* = (¢} (t), @5(t), --- , o5 (E))T
€ C((—o0, 0]; R™). If there exist constants « > 0
and M > 1 such that for every solution Z(t) =
(21 (1), 22(t), -+, 2, ()T of system (1.1) with any
initial value ¢ € C((—o0, 0]; R™), |z;(t) —zf(t)] <
M|p — ¢*lle=* ¥Vt >0, i=1, 2, ---, n. Then
Z*(t) is said to be global exponential stable.

Definition 2. A real n x n matrix H = (h;;)
is said to be an M-matrix if hy; < 0, 4,5 =
1,2, ---,n, i#j, and H~1 > 0.

2. Preliminaries

First, consider an abstract equation in a Banach
space X,
Lz = ANz, Ae (0, 1), (2.1)

where L : DomLNX — X is a linear operator and A
is a parameter. Let P and @) denote two projectors,
P:DomLNX — KerL and Q:X — X/ImL.
For convenience, we introduce a continuation theo-
rem [23] as follows.

Lemma 2.1.]23] Let X be a Banach space.
Suppose that L : DomL C X — X is a Fred-
holm operator with index zero and N : § — X
is L—compact on Q with Q open bounded in X.
Moreover, assume that all the following conditions
are satisfied.

(1) Lz # ANz, Vz € 00N DomL, A € (0, 1);

(2) QNz #0, Ve e QN KerlL;

(3) degp{@QN, QNKerL, 0} # 0, degp denotes
the Brouwer degree. Then equation Lz = Nz has
at least one solution in €.

For ease of exposition, throughout this paper
we will adopt the following notations:

|Tiloo = max |zi(t)|, u(t) = (z1(t), z2(t), -,
te[0,w]

()", ik = (/ |2 () [Fdt)/* i = 1,2, n.
0

We denote X as the set of all continuously
w—periodic functions u(t) defined on R, and denote
llull x = max{|z1]oos |T2]0os - * 5 |Tn|oo}- Then, X is
a Banach space when it is endowed with the norm
|ullx . Let for u(t) = (x1(t),z2(t), - ,z,(t))T €
X,

(Nu)i(t) = —ai(t, z:(1))[bi(t, zi(t)) — Z cij(t)



x fi(a;(t Zdw (t)f; / Kij(u)z;(t — u)du)
+Ii( )], i=1,2,--- (2.2)
(Lu)(t) = u'(t) = (21(1), 25(t ) @, ()T,
DomL = {u(t) : u(t) € X,u(¢ ) € X}, (2.3)
Pu=Qu= %/0 u(t)dt = (%/0 x1(t)dt,
1 [ 1 [ .
;A:@@%~W;A:%wﬁy

In view of (2.2) and (2.3), the operator equation
Lz = ANz
is equivalent to the following equations

Z cij(¢) f(a;(t

Jj=1

xh(t) = = a;(t, x;(t))[bi(t, i (t

SN (0 / K () (1

1=1,2,--- ;n, A€ (0,1). (2.4)x
Again from (2.2) and (2.3), it is not diffi-
cult to show that KerL = R", ImL = {u( ) :
u(t) = (zl(t)a x2(t) xn( )) e X, fO 1’1 dﬁ
Jo wa(t)dt = -+ = [ wn(t)dt = 0} is closed in X,
dimKerL = n = codim Im L and P, @) are contin-
uous projectors such that

ImP = KerL and Ker@ = ImlL.

u)du) + 1;(t)],

It follows that the operator L is a Fredholm oper-
ator with index zero. Furthermore, the generalized
inverse (of L) K, : ImL — DomL N KerP reads
as

()= [y = [ [Caiopasa

u(t) = (21(t), 22(t), -, 2, (t)T € ImL, (2.5)
for i =1,2,--- ,n. Therefore, from (2.2) and (2.5),
we have that N is L—compact on Q, where (2 is an
open bounded set in X.

The following lemmas will be useful to prove
our main results in Section 3 — 4.

Lemma 2.2.[24]-[25]. Let H = (h;j)nxn with
hij <0, 4,5=1, 2, ---,n, i # j. Then the follow-
ing statements are equivalent.

(1) H is an M-matrix.

(2) There exists a vector 7 = (1,72, ,Mn)
> (0,0,---,0) such that nH > 0.

(3) There exists a vector £ = (&1,&2, -+, &) 7T
> (0,0,---,0)T such that H¢ > 0.

Lemma 2.3 ([24]-[25]). Let A>0beannxn
matrix and p(A4) < 1, then (E, — A)~! > 0, where
FE,, denotes the identity matrix of size n.

3. Existence of a periodic solu-
tion

Theorem 3.1.  Let (H;)—(Hg) hold. Assume
that the following condition is satisfied .

(H7) there exists a vector n = (01,72, ,Mn)
> (0,0,---,0) such that

n= (7717772"" 77_771) = W(En 7A) > (0707 aO)a

where A = (dij)nxn, i = ;' (@G5 Lj+disLikij) (i, j
=1,2,---,n). Then system (1.1) has at least one
w—periodic solution.

Proof. We shall seek to apply Lemma 2.1. To
do this, it suffices to prove that the set of all possi-
ble w-periodic solutions of Eq. (2.4) is bounded.

Let u(t) = (z1(t), x2(t), - ,2,(t))T be an ar-
bitrary w— periodic solution of Eq. (2.4),. Then,
for any i = 1,2,--- ,n, z;(t), as the components of
u(t), are all continuously differentiable. Thus, there
exist ¢; € [0, w] such that |z;(¢;)| = tér[})a)i}] | (t)].

Hence, z(t;) =0,i = 1,2,

tux § Cz]

,n. This implies that

n

D Fi(i(t) + > dij(ts)

Jj=1

ij/ Kij(w)aj(ti — u)du) — Ii(t:), (3.1)

In view of (Hy)—(Hs), for i =1,2,---  n, we have
bylai(t:)]| < [bi(ts, 2i(t:))]
< Y (@GLy + digLiki)|a;(t5))|
j=1
+ Y (@G + di) | £5(0)] + |1t (3.2)

<.
Il
-

n

Set Iy = > b (CU +%)|f] 0)] +b;1Tia i =
j=1
1,2,--- ,n. Clearly, (3.2) implies that

n

st <D b M@ Ly + dig Liki )| (1))

Jj=1

3

+ b (@i + dig) | £5(0)| + ;' T;
=1

Jj=



(B, Fp, -+ F,)" = F, (3.4)
which, together with (H7), implies that

min{7y, 72, -+, G H(|21 (01) [+ @2 (t2) [+ -+ an (tn)])

< mlza ()] + elz2(t2)] + -+ Ml (tn)]

= (B = N)(Jz1(t)], [za(ta)l, - [en ()T

< n(F17F27”'aFn)T

= mbB1+neFat, -t Fy. (3.5)
Therefore,

|Ziloo = e |2i(t)] = |zi(t:)] <

n 1+77,2 2,+ —’:77 ::5*aZ:17 27"',77“

mln{ntha o 77777,}

(3.6)

Again from (Hy), it follows from Lemma 2.2 that
E, — A is an M —matrix and there exist a vector
¢= (G, -y )T > (0, 0,---, 0)T such that
(B, — A)¢ > (0, 0,---, 0)T, which implies that
we can choose a constant d > 1 such that & =

(&1,80,-++,&)T = (d¢1,dCs, -+ ,d(,)T = d¢ and
&=dg >06*i=1,2, .-+ ,n,and

(Bn— NE=d(E, —A)C>F. (3.7)
We take

Q={ult) e X,~E<ut)<EVte R}, (3.8)

which satisfies Condition (1) of Lemma 2.1. If
u(t) = (x1(t), z2(t), - ,2,(t))T € 0QNKerL, then
u(t) is a constant vector in R", and there exists
some i € {1,2,---,n} such that |z;| = &. It fol-
lows that

w

@vu)s =2 [ aittalbte ) -3 e 2)

SNy, / K () (t—u)du) + I (1)) dt (3.9)

j=1
We claim that

[(QNu);| > 0. (3.10)

By way of contradiction, suppose that [(QNu);| =
0, i.e.,

1

w
_;/0 a;(t, x;)[bi(t, z;) Zc” ) fi(x5)

n

=D dy (t)fj(/ooo Kij(w)z;(t—u)du)+1;(t)]dt = 0.

Jj=1

Then, there exists some t* € [0, w] such that

a;(t*, ;) [bi(t", ;) ZC” f] xj
j=1
=S dy ) / K () (£ —w)du) + I, ()] = 0,
j=1

which implies that

bylws| < [bi(t", i) = |ZCU ) fi(z;)

Jj=1

FD [ Ky~ udo) ~ 1),
j=1 0
Thus,

5 |z
Z |CZ]
Idij(t*)l(\fj(/o Kij(u)z;(t* — u)du) — f;(0)])
(leig ()] + [dag (E)D1f (O] + b5 1))

Z ;&5 + Fi.
j=1

IN

)I(15(x5) = £3(0)])

+ o+

IN

This implies that ((E, — A)¢); < F;, which contra-
dicts (E, — A)é > F. Therefore, (3.10) holds, and
hence, Condition (2) of Lemma 2.1 is satisfied.

Furthermore, we define a continuous function
U . QN KerL x [0,1] — X by P(u,u) =
pdiag(—a1by, —agby, - - , —anbn)u+(1—p)QNu, for
all u = (z1,72,-+ ,2,)7 € QN KerL = QN R"
and p € [0, 1].

If ut) = (z1(t),z2(t), - ,z,(t)T € 00N
KerL, then u(t) is a constant vector in R"™, and
there exists some ¢ € {1,2,--- ,n} such that |z;| =

&;. Tt follows that
_ T 1 /v

i(t, ;) ZC” () fj(z;)— 2 ldij(t)fj(/o Kij(u)
xj(t —uw)du) + I;(t)]dt}. (3.11)

We claim that
(W, )il > 0. (3.12)



If this is not true, then |(¥(u, un));| =0, i.e.,

—paibiz; + (1

it [ttt

- ch () fi(z;)

w)xj(t—u)du)+I;(t)]dt} = 0.

dis( fj/

Hence, there exists some t** €

+ (1 = ) {—a; (™", 2) [b: (£, 2:)

_ch] ) f5(x5) Zdw )i / Kij(u
j=1
)} =0.

Now, we shall consider the following two cases.
Case (i). If z; > 0, in view of (Hz) and
(H3),we get

[0, w] such that

—pazbix;

z; (™ — w)du) + L;(t™ (3.13)

a; (£, 2y)b; (£, 15) — azbsx; < 0.

Thus, from (3.13), we obtain

—al—(t**, .’Ez)bi(t**, .’EZ) + (].

) {as(t )
—;wm%m%wamwmAJ%m

xai(t* — w)du)) + L))}
l‘i)bi(t**7

@) —aibiws|—a; (FF, 2) b (T, ;)

2 plai (™,
n

() —ai(t, @) [= (e (87) f () iy (87) %

j=1

B B = wdw) + 1)) =0
(3.14)
which implies that

a; (U, @i)bi (1, @) < (1 — p){—ai(t™, z;)

x [- Z(Cij () fi(z;) + Li(t™)

J

1
+ %@Mfﬁ/ K () (# — w)du))]}

IN

(7w IZ (cij (177) fi(aj) = Li(t™)

+ dij(t**)fj(/o Kij(w)z; (8™ = u)du))|.(3.15)

Noting that z; > 0 and b;(t**,
we have

x;) > 0, from (3.15),

bx; < bt

<|ZCU

s “fﬁ/ Ky )y (17 = w)d)) = 127,

“)fi(xy) +

Therefore,

§i=z < Z%‘jgj + Fi.

j=1

This implies that ((E, — A)¢); < Fj;, which contra-
dicts (E,, — A)¢ > F. Therefore, (3.12) holds.
Case (ii). If x; < 0, using the methods
similar to those used in Case (i) , we can show that
(3.12) holds. It follows that U(xz1, xa, -+ ,zp, pu) #
(0’ 0,---, O)Ta v(xh T2, axn)T €
QN KerL,p € [0, 1].
Hence, using the homotopy invariance theorem,
we obtain degp{QN, QN KerL, (0,0,---,0)7} =
degB{( alblxla 7&21)21’2, e 7anbnxn)T7 Q N
KerL, (0,0,---,0)T} # 0. To summarize, we have
proved that satisﬁes all the conditions of Lemma
2.1. This completes the proof.

4. Uniqueness and exponential
stability of the periodic solu-
tion

In this section, we establish some results for
the uniqueness and exponential stability of the
w—periodic solution of (1.1).

Theorem 4.1. Suppose that (Hy)—(H7)
hold. Assume also that the following conditions
are satisfied .

(Hg) fori=1,2,..,
constant L¢ such that

n, there exists a positive

la;(t,u) —a;(t,v)| < L{ju—v|, forall t,u,v € R;
(Hg) fori=1,2,...,n, there exists a positive
constant L¢ such that

[ai(t, u)bi(t, w) — ai(t, v)bi(t, v)](u —v) 20,

|ai(t7u)bi(t7u) - ai(tvv)bi(tvv)‘ > L(ilb|u - 1)|,

for all t,u,v € R;
(HIO) for i = 1,2,...,
for all u € R;

n, | fi(u) [< Ly |



- (Hy) fori,j=1,2,---
MmN Fot-+n, Fy
min{71,72, 7 }
M —matrix, where H =

,n,setFi :b;lz75:
, and assume that F,, — H is an
(hij)nxn and

hij = [L§" = L§ Y (@516 + digLidks;) — LT~
=1

xa;(CjL; + disLjki;),
L — L3 (@716 + dij Lioks;) — LYT; > 0.
j=1
Then system (1.1) has exactly one w-periodic solu-
tion, and the w-periodic solution of system (1.1) is
globally exponentially stable.

Proof. Since (H;)—(Hy) hold, it follows from
Theorem 3.1 that system (1.1) has at least one w-
periodic solution Z*(t) = (z%(t), z5(t), -+ , x5 (t))T
with initial value p* = (©%(t), ©5(t), -, ()7T.
from (Hyp), we have

| £;(0)|=0, for j=1,2,...,n

Thus, by using a similar proof in (3.2) — (3.6), we
obtain

mEr +moFy + -+, F,
|2} ]oo = max |27 (t)| < P g— -
te[o, w] min{n1, 72, ,n}
_mP Pt P (4.1)

min{ﬁ17ﬁ27 e 7ﬁn}
wherei =1, 2, --- ,n.

Let Z(t) = (w1(t), 22(t), -+ ,2,(t))" be an ar-
bitrary solution of system (1.1) with initial value
@ = (p1(t), @2(t), -+, pa(t))” and define y(t) =
Z(t) — Z*(t). Then, for i =1,2,--- ,n, set

ai(t, yi(t) = ai(t, yi(t) + 27 (£)bi(t, y(t) + 27 (1))

—ait, @ (0)bi(t, ] (1)),
Bilt,ys(1)) = ailt,y(t Zcm G
+25(8) - £(x; <tm,
it (1)) = ault, a(0) + 25 (6) S iy (1)

<[/ ( / K )y (t — w) + 23 (¢ — u)du)
vy / Ky () (25 ¢ — w)du),
it (0)) = as(t,ya6) + 25(1))

O iy ()25 (1)
3t 3i(8)) = fas(t,:(6) + 7 () — asft, 27 (1)

x Y di(t f]/ Kij(u

Jj=1

7t —u)du),

ei(t7 yi(t)) =
Then, we get
yi(t) = —a(t,y:(t)) + Bi(t, ya(t)) + B(t, ya(t))

ity () + 7ty (t) — 0:(t, vi(t),  (4.3)

Thus, for i =1,2,--- n, from (Hs), (Hy), (Hs),
(Hsg), (Hg) and (Hip), we have

D™ yi(t)] = D™ {sgn(xi(t) — 27)(zi(t) — 27)}

< =Lyt + 18i(t wi (1) + 1Bt yi (1))
Hvilt, g @)+ 7 yi ()] + 103 (E, vi(2))]

[ai(t, yi(t) + 27 (1)) — ai(t, «7 ()i (t).

< (L - LY (@516 + diy Lykisd) —
j=1
L{T i) +a; Y (@51 + digLikiy)g; (t),
j=1
where y;(t) = bup |y](s)\ From (Hg) and

Lemma 2.2, we obtam that there exist a con-
stant ¢ > 0 and a vector & = (&1,&2,-+,&,)T
(0,0,---,0)T such that

(Ep, — H)¢ > (0,0,--+,0).
Therefore, for 1 =1,2,---,n

n

=Y k& =& =Y (L —L§Y (G5Lsd
j=1 j=1 j=1
+di; Libki;) — L{L)~as (€ Ly + dijLiki;)&; > o,
which implies that

n

—[L{" = L3 Y (@7 L;6 + dij Lyokiy) — LiTi)é
Jj=1
+a; (@ Ly + digLyki)€; <0, (4.5)
7j=1

where i = 1,2,--- ,n. We can choose a constant

a < 1 such that
by +{—[L{" = L{ Y (@5 L0+ diy LySkiy) — LiT]E
j=1



Y@Ly + Ay Liky)6e T} <0 (46)
=1

We can also choose a constant 3 > 1 such that

e > 1, for all t€ (—o0, 0],i=1,2,---,n.
(4.7)
For Ve > 0, let

t) =BG g (0) +ele ™, i=1,2,-- ,n.
j=1

(4.8)

From (4.6) and (4.8), we obtain

t) = —aB¢; [Z 7;(0) + ele "
j=1
> —[L§" = 2L¢ Y (@516 + digLidki;) — LiT]
j=1
Yi(t) + @iy (@l + dijLiki)Y5(t), (4.9)
j=1

where T;(t) = sup Y;(s). In view of (4.7) and
—00<s<0

(4.8), for i =1,2,--- ,n, we have

at>zy]

+e > |y (t)], for all t € (—oo, 0]. (4.10)
We claim that

= B&[>_y;(0) +<le
j=1

()] < Ti(t), for all ¢ >0, (4.11)

Contrarily, there must exist ¢ € {1,2,---
t; > 0 such that

lyi(ti)| = Yi(t:) and |y, ()] < T;(),

for all te[-7, t), j=1,2,---,n, (4.12)

,n} and

which implies that

lyi(ti)| — Ti(t:) =0 and [y;(t)] —
for all te€[-7, t;), j=1,2,---,n. (4.13)
It follows that

T;(t) <0,

0 < D (Jys(ts)] — Yi(ts))
h—0— h
— lim inf Yilti+h) — Ti(t)
h—0— h
= D7 yi(t:)| = D-Ti(t:). (4.14)

From (4.4), (4.9) and (4.12), we obtain

D~ yi(t:)]
< (L8 - ¢y (@5 Ly0 + diLioky;) — L))
J=1

i (t)| + @i Y (@5 L5 + dig Likig g5 (t:)
J=1

—[L§ = L¢ Y (@5 L6 + digLidki;) — LiT]
j=1

IN

Yiti) + @ Y (@5 Ly + dijLikij)5(t:)
j=1
< D_T(t), (4.15)
which contradicts (4.14). Hence, (4.11) holds. Let-
ting e — 0t and M =n max {B{l + 1}, we have

from (4.8) and (4.11) that

n

[wi(t) — @ ()] = |y ()] < BE Y g;(0)e™"
j=1
< Banllp — ¢ lle™ < Ml — ¢*[le™,
for all ¢ > 0. This completes the proof.

5. An illustrative example

Example 5.1. Consider the following GCNNs
xl(t) —(2+ W arctan :z:l( N[z1(t)

[z
(sint)]a1(t)] — 55 (cost)|wa(t)]
(sint) |f0 smu) Uy (t — u)dul
(cost]| Jo~ (sinu)e™ @y (t — u)du]
n-t,
b (t) —(2 4 13- arctan x5 (t))[z2 () —
%(sin%)\ml(tﬂ 7 (cos 4t) |z (t)]—

2
o (sin26)] [ (sinu)e a1 (¢ — u)du|—
37 (cos4t)| [ (sinu)e™ "o (t — u)dul

—1—% cost.
(5.1)

Notice that fi(z) = fa(z) = |z|, Kij(u) =
(sinw)e™, a1 (t, ) = az(t,z) = 2 + 3 arctanz,
b1(t, z) = ba(t,x) = x, it is easy to show that we can
choose the constants in the conditions (H;) — (Hio)
and (Hf,) as follows.
al—agzl,a1262:351—62—51—52:
1,Li=Ly=1,L¢ =L =4, L{"=Ls* =1,I, =
Iy = 12,811 =dy =Cig =C1z = Co1 = doy = Tz =
dya = 55,n = (m, m2) = (1, 1),kyj = 1,4,5 = 1,2.
Then, we obtain

n= (0, n2) =n(En —A) = (6’ 6)’ 6=1



2

- 353

L¢* — L8 (@136 + dij Lidkij) — LT = =,

i szI(CJ 30 + dij Ljoki) i 360
i=1,2, and

90 90
H = (hij)axe = B W ).
353 353

which implies that

90 90 180

< [ — _ =
PUH) < [ Hlloo = 325+ 353 = 353 < 1

where ||H|o the row norm of matrix H. It is
straight forward to check that all the conditions
needed in Corollary 4.1 are satisfied. Therefore,
by Corollary 4.1, system (5.1) has exactly one 27-
periodic solution, and the 2m-periodic solution of
system (5.1) is globally exponentially stable.

6. Conclusion

In this paper, Cohen-Grossberg neural networks
with continuously distributed delays have been
studied. Some sufficient conditions for the existence
and exponential stability of the periodic solutions
have been established. These obtained results are
new. Moreover, an example is given to illustrate
the effectiveness of the new results.
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