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Abstract

The ant system is a metaheuristic developed for
the solution of hard combinatorial optimization
problems. In this paper, through an analysis of
the constructive procedure of the solution in the
Ant Colony System (ACS), a modified algorithm
for solving Vehicle Routing Problem (VRP), based
on the ACS Hybridized with Randomized Algo-
rithm(HRACS), is proposed. In HRACS, only par-
tial customers are randomly chosen to compute
the transition probability. Experiments on vari-
ous aspects of the algorithm and computational
results for fourteen benchmark problems are re-
ported. We compare our approach with some other
meta-heuristics and show that our results are com-
petitive.

Keywords: Ant colony system, Combinatorial op-
timization, Randomized algorithm, Vehicle routing
problem.

1. Introduction

The Ant System(AS), introduced by Colorni,
Dorigo and Maniezzo[1-3] is a new distributed
meta-heuristic for hard combinatorial optimization
problems and was first used on the well known
Traveling Salesman Problem (TSP). Starting from
Ant System, several improvements of the basic al-
gorithm have been proposed [4-7]. Typically, these
improved algorithms have been tested again on the
TSP [8]. All these improved versions of AS have
in common a stronger exploitation of the best solu-
tions found to direct the ants’ search process; they
mainly differ in some aspects of the search control.
One of the most efficient ACO based implemen-
tations has been Ant Colony System (ACS)[9,10],
that introduced a particular pheromone trail up-
dating procedure useful to intensify the search in
the neighborhood of the best computed solution.
The Vehicle Routing Problem (VRP) is a
well-known and complex combinatorial problem,

which has received considerable attention in re-
cent years. The vehicle routing problem has been
largely studied because of the interest in its appli-
cations in logistic and supply-chains management.
Bullnheimer, Hartl, and Strauss [11,12] applied an
AS-like algorithm to VRP. Gambardella, Taillard,
Agazzi [13], John E. Bell et al. [14] and Silvia
Mazzeo et al. [15] have also attacked the VRP
by means of an ACO algorithm. They also study
the vehicle routing problem with time windows
(VRPTW), which extends the VRP by introduc-
ing a time window within which a customer must
be served. in all, Many different versions of this
problem have been formulated to take into account
many possible different aspects. One of the most
interesting that has been raising in recent days, is
to take into account the diversified road network
traffic conditions during the course of the day.

Randomized algorithm is widely used in com-
binatorial optimization. It has been shown to out-
perform their deterministic counterparts in a num-
ber of interesting application domains. UP to date,
they are becoming increasingly more important and
popular for solving computationally hard combi-
natorial problems from various domains of Al and
Operations Research, such as planning, scheduling,
constraint satisfaction, satisfiability and other ap-
plication domains. While doing so does not improve
the algorithm in the worst case, it often makes very
good algorithms in the average case.

In this paper, we apply randomized algorithms
to ACS. The proposed algorithm computes the
transition probability of random generated partial
customers only, while ACS should compute that of
all customers in the constructive procedure of the
solution.

The paper is organized as follows. In Section
2, vehicle routing problems are introduced by pre-
senting a formal definition of the VRP. Meanwhile,
we introduce the solution construction mechanism
used by the ACO metaheuristic. Section 3 presents
a modified ant algorithm which Hybridized with
Randomized Algorithm(HRACS). In Section 4 we
provides an experimental results and comparisons



of HRACS with ACS. We conclude in Section 5
with a brief summary of the contributions of this

paper.

2. Ant colony system for the
VRP

Combinatorial optimization problems Almost all
ACO algorithms have initially been tested on the
Traveling Salesman Problems. In this paper we ap-
ply the similar idea to the VRP.

2.1. Vehicle routing problem

The vehicle routing problem is a very complicated
combinatorial optimization problem that has been
worked on since the late fifties, because of its central
meaning in distribution management.

The vehicle routing problem can be described
as follows[16]: n customers must be served from a
(unique) depot. Each customer 7 asks for a quantity
q; of goods. A fleet of v vehicles, each vehicle a
with a capacity @, is available to deliver goods.
A service time s; is associated with each customer.
It represents the time required to service him/her.
Therefore, a VRP solution is a collection of tours.

The VRP can be modelled in mathemati-
cal terms through a complete weighted digraph
G = (V,A), where V. = {0,1,--- ,n} is a set of
nodes representing the depot (0) and the customers
(0,1,---,n), and A = {(4,5) | i, € V} is a set of
arcs, each one with a minimum travel time t¢;; as-
sociated. The quantity of goods ¢; requested by
each customer ¢ (i > 0) is associated with the cor-
responding vertex with a label. Labels Q1,--- , Q,,
corresponding to vehicles capacities, are finally as-
sociated with vertex 0 (the depot). The goal is to
find a feasible set of tours with the minimum total
travel time. A set of tours is feasible if each node is
visited exactly once (i.e. it is included into exactly
one tour), each tour a starts and ends at the depot
(vertex 0), and the sum of the quantities associated
with the vertices contained in it, never exceeds the
corresponding vehicle capacity Q.

Table 1 contains the data for the 14 vehicle
routing problem instances[16, 17]:

2.2. Applying ant colony sys-
tem to the VRP

To solve the VRP, the artificial ants construct ve-
hicle routes by successively choosing cities to visit,

Instance | n Q L best publ
C1 50 | 160 | o0 524.61
C2 75 | 140 | o 835.26
C3 100 | 200 | oo 826.14
C4 150 | 200 | oo 1028.42
C5 199 | 200 | oo 1291.45
C6 50 | 160 | 200 555.43
c7 75 | 140 | 160 909.68
C8 100 | 200 | 230 865.94
C9 150 | 200 | 200 | 1162.55
C10 199 | 200 | 200 | 1395.85
C11 120 | 200 | o0 1042.11
C12 100 | 200 | oo 819.56
C13 120 | 200 | 720 | 1541.14
Cl14 100 | 200 | 1040 | 866.37

n ... number of customers
Q@ ... vehicle capacity
L ... maximum tour length
best publ. ... best published solution

Table 1: Characteristics of the benchmark problem
instances (C1-C10 are Random Problems and C11-
C14 are Clustered Problems)

until each city has been visited. Whenever the
choice of another city would lead to an infeasi-
ble solution for reasons of vehicle capacity or total
route length, the depot is chosen and a new tour is
started.

At each step, every ant k computes a set of fea-
sible expansions to its current partial solution and
selects one of these probabilistically, according to
a probability distribution specified as follows. For
ant k the probability pfj of visiting customer j af-
ter customer 4, the last visited customer, depends
on the combination of two values[16]:

e the attractiveness u;; of arc (4,j), as computed
by some heuristic indicating the a priori desir-
ability of that move. Where w;; = t¢;;(a mini-
mum travel time associated with each arc), i.e.
it depends directly on the travel time between
customer ¢ and customer j;

the pheromone level 7;; of arc (4,j), indicating
how proficient it has been in the past to visit
j after 7 is a solution; it represents therefore
an a posteriori indication of the desirability of
that move.

This heuristic uses a population of m agents
which construct solutions step by step. When all
the ants have constructed their tour, the best solu-
tion are rewarded so as to encourage the identifica-
tion of ever better solutions in the next cycles.



The most important component of an ant sys-
tem is the management of pheromone trails. In
a standard ant system, pheromone trails are used
in conjunction with the objective function for con-
structing a new solution. The information con-
tained in the pheromone trails and the use of this
information is the key element of an ant system. In-
formally, pheromone levels give a measure of how
desirable is to insert a given element into a solution.
For the VRP, we have chosen to represent the set of
the pheromone trails by a matrix T = (7;;) of size
n X n, where the entry 7;; measures the desirability
of setting 7; = j in the solutions visited by the ant
system.

2.2.1. Construction of vehicle routes

ACS goal is to find a shortest tour. In ACS m
ants build tours in parallel, where m is a parame-
ter. Each ant is randomly assigned to a starting
node and has to build a solution, that is, a com-
plete tour. A tour is built node by node: each ant
iteratively adds new nodes until all nodes have been
visited. When ant k£ is located in node i, it chooses
the next node j probabilistically in the set of fea-
sible nodes NF(i.e., the set of nodes that still have
to be visited). The probabilistic rule used to con-
struct a tour is the following: with probability ¢y a
node with the highest [r;;]%[n:;]°, j € NF is chosen
(exploitation), while with probability (1 — go) the
node j is chosen with a probability p;; proportional
to [1i;]%[mi;1°, 7 € NF (exploration).
With Q = {Uj S 1%

v; is feasible to be visited} U {vo}, city v; is
selected to be visited after city v; according to a
random-proportional rule [6] that can be stated as
follows:

[ris]*[m:5]°

pw{ (m if v; € Q

(1)

otherwise

This probability distribution is biased by the
parameters o and (§ that determine the relative in-
fluence of the trails and the visibility, respectively.
For the TSP Dorigo et al. [19] define the visibil-
ity as the reciprocal of the distance. The same is
done for the VRP in [12] where the selection prob-
ability is then further extended by problem spe-
cific information. There, the inclusion of savings
and capacity utilization both lead to better results.
The latter is relative costly in terms of computation
time (as it has to be calculated in each step of an
iteration).

2.2.2. Pheromone trail update

After an artificial ant k& has constructed a feasible
solution, the pheromone trails are laid depending
on the objective value Ly. For each arc (v;, vj)
that was used by ant k, the pheromone trail is in-
creased by Arfj = 1/Lj. In addition to that, all
arcs belonging to the so far best solution (objec-
tive value L*) are emphasized as if o ants, so-called
elitist ants had used them. One elitist ant increases
the trail intensity by an amount A7}; that is equal
to 1/L* if arc (v;, v;) belongs to the so far best
solution, and zero otherwise. Furthermore, part of
the existing pheromone trails evaporates (p is the
trail persistence)[3]. Thus, the trail intensities are
updated according to the following:

m
T = pTinld + Z Arfj +oAT]; (2)
k=1

where m is the number of artificial ants

Concerning the initial placement of the arti-
ficial ants it was found that the number of ants
should be equal to the number of cities in the TSP,
and that each ant should start its tour from another
city. The implication for the VRP is that as many
ants are used as there are customers in the VRP
(i.e. m = n), and that one ant is placed at each
customer at the beginning of an iteration. After
initializing the basic ant system algorithm, the two
steps construction of vehicle routes and Pheromone
trail update, are repeated for a given number of it-
erations.

The update of the pheromone trail is done in
a different way than those of the standard model
where all the ants update the pheromone trail. In-
deed, this manner of updating the pheromone trail
implies a very slow convergence of the algorithm
[6]. For speeding-up the convergence, we update
the pheromone trail by taking into account only
the best solution produced by the search to date.
First, all the pheromone trails are weakened by set-
ting 7, = p- 7, (1 < 4,5 <n) where 0 < p <1
is a parameter that controls the evaporation of the
pheromone trail: a value of p close to 1 implies that
the pheromone trails remains active a long time,
while p value close to 0 implies a high degree of
evaporation and a shorter memory of the system.

3. ACS with randomized algo-
rithm

In this section, we present a hybrid algorithm. The
approach applies randomized algorithm to ACS.



The first ant system for vehicle routing prob-
lems has been designed only very recently by
Bullnheimer et al.[11,12] who considered the most
elementary version of the problem: the capacitated
vehicle routing problem (CVRP). It considers a
more elaborated vehicle routing problem with two
objective functions: (i) the minimization of the
number of tours (or vehicles) and (ii) the mini-
mization of the total travel time, where number
of tours minimization takes precedence over travel
time minimization.

An interesting aspect of the local updating is
that while edges are visited by ants. Eq.(2) makes
the trail intensity diminish, making them less and
less attractive, and favoring therefore the explo-
ration of not yet visited edges and diversity in so-
lution generation.

Once a complete solution is available, it is ten-
tatively improved using a local search procedure.
We used a very simple greedy algorithm, which it-
eratively selects a customer and tries to move it into
another position within its tour or within another
tour. A maximum computation time for the local
search, t;5, must be specified.

Once the m ants of the colony have completed
their computation, the best known solution is used
to globally modify the pheromone trail. In this way
a ”preferred route” is memorized in the pheromone
trail matrix and future ants will use this informa-
tion to generate new solutions in a neighborhood
of this preferred route. The pheromone matrix is
updated as follows:

new _ (1_pypold, P
Ti ( p)T” +CostBest

V(i,7) € BestSol

(3)

where p(0 < p < 1) is a parameter and Cost-

Best is the total travel time of solution BestSol,

the best tour generated by the algorithm since the
beginning of the computation.

The process is iterated by starting again m ants
until a termination condition is met. The termina-
tion criterion is a maximum computation time of
< taes Seconds.

Pseudo-code of the ACS procedure for the ve-
hicle routing problem as following[16]:

BestCost := o0;
For each arc (i,5)
Tij =170
EndFor
While (computation time < t4.5)
For k:=1 to m
While (Ant k£ has not completed its solu-
tion)

Select the next customer j, according to

Eq.(1);
Update the trail level 772", according to
Eq.(2);
EndWhile
Run a local search (maximum computa-
tion
time = t;5);
Cost := Cost of the current solution;
If (Cost < CostBest)
CostBest := Cost;
BestSol := current solution;
EndIf
EndFor

For each move (3,j) in solution BestSol

Update the trace level 7] according to

J
Eq.(3)
EndFor
EndWhile
In order to decrease the times of computing
Eq.(1), we introduce randomized algorithm into
ACS, i.e.,HRACS. In Eq.(1), pfj is the probabil-
ity that the k-th ant in node ¢ to choose node j. In
HRACS, only random generated N customers are
calculated, where N is part of the number of cus-
tomers n. Usually, let N is almost 20% of n. In C3,
VRP instance,for example,we let N = 20. Thus,
HRACS adopt randomized approach only to com-
pute the transition probability of N customers(ACS
computes pfj of all customers). We modify pseudo-
code of inner While loop as follow:
For i:=1 to n-N do
Generate  random
{r1,r2,..rn},
compute pf] of N customers according to
Eq.(1)
Update the trail level 7,3, according to
Eq.(2);
End-for
For i:=1 to N do
compute pfj of last N customers
Update the trail level 73, according to
Eq.(2);
End-for

number r —

4. Numerical results

In this section we will present numerical re-
sults for our new approach(HRACS) and compare
them with results from previous Ant Colony Sys-
tem algorithm(ACS)[11] for the VRP as well as
TABUROUTE algorithm(TS)[20] and Simulated
Annealing algorithm(SA)[21].



Instance TS SA ACS HRACS
C1 524.61 528 524.61 524.61
C2 835.77 | 838.62 870.58 872.41
C3 829.45 829.18 | 879.43 865.32
C4 1036.16 1058 1147.41 | 1042.73
C5 1322.65 1376 1473.40 | 1320.26
C6 555.43 555.43 562.93 566.31
Cr 913.23 909.68 | 948.16 944.37
C8 865.94 | 866.75 886.17 885.54
C9 1177.76 | 1164.12 | 1202.01 | 1172.66
C10 1418.51 | 1417.85 | 1504.79 | 1480.27
Cl11 1073.47 1176 1072.45 | 1066.12
C12 819.56 826 819.96 821.16
C13 1573.81 | 1545.98 | 1590.52 | 1587.77
Cl14 866.37 890 869.86 868.91

Table 2: Experimental results for T'S,SA,ACS and
HRACS on VRP

The numerical analysis was performed on a set
of benchmark problems described in [22]. In table
1 the set of benchmark problems consists of 14 in-
stances containing between 50 and 199 customers
and a depot. The first ten instances were generated
with the customers being randomly distributed in
the plane, while instances 11-14 feature clusters of
customer locations. All instances are capacity con-
strained.

Our purpose is to show that our ant procedure
is able to find good solutions in a moderate amount
of time for problems presenting a structure.

Experiments were run on a Pentium IV, 256MB
of RAM, 1.7 GHz processor. In order to asses
the relative performance of ACS versus HRACS in-
dependently from the details of the settings, We
choose the same settings. we used n artificial ants,
initially placed at the customers v;,--- , v, and set
a=1,6=>5and p=0.75. For all problems maxi-
mum iteration times are 2n.

Each run is guaranteed to be independent of
others by starting with different random seeds. The
result in Table 2 and Table 3 indicate that HRACS
was able to find good results for larger problem
instances. HRACS is superior to ACS except for
three instances(C2, C6 and C12). For the in-
stances of C5, C9 and C11, HRACS even shows
a slightly better performance than TS.

5. Conclusion

In this paper we propose a hybrid ACO approach
for solving vehicle routing problems. The main idea
is to combine an ant colony system with a Random-

Instance | ACSgen. | HRAS oo .
C1 0.00% 0.00%
C2 4.23% 4.45%
C3 6.45% 4.74%
C4 11.57% 1.39%
C5 14.09% 2.23%
C6 1.35% 1.96%
Cc7 4.23% 3.81%
CS8 2.34% 2.26%
C9 3.39% 0.87%
C10 7.80% 6.08%
C11 2.91% 2.30%
C12 0.05% 0.20%
C13 3.20% 3.03%
Cl4 0.40% 0.30%

Table 3: Deviation of ACS and HRACS on VRP

ized algorithm namely HRACS. Computational re-
sults shows the viability of the HRACS approach to
generate very high quality solutions for the VRP,
and proved that HRACS is an interesting novel sto-
chastic approach to optimization of the VRP, espe-
cially to larger instances. Moreover, The idea de-
veloped in this paper is generic and applicable to
other heuristics of the VRP.

There are several interesting directions for fu-
ture work. Omn the one hand, it seems impor-
tant to incorporate stochastic information to de-
cide whether to accept a customer request. On the
other hand, it is worth while to exploit the idea
presented in this paper to solve dynamic real-world
problems. As a consequence, applying these ideas
to other domains is an important avenue for future
research.

References

[1] A. Colorni, M. Dorigo and V. Mariiezzo. Dis-
tributed Optimization by Ant Colonies, in:
Proc. Eearop. Conf. Artificial Life, ed. F.
Varela and P. Bourgine, Elsevier, Amsterdam,
1991.

[2] M. Dorigo, Optimization,Learning and Nat-
ural Algorithms, Doctoral Dissertation, Po-
litecnico di Milano, Italy,1992.

[3] M. Dorigo, V. Maniezzo and A. Colorni. Ant
System: Optimization by a Colony of Cooper-
ating Agents, IEEE Trans. Sys., Man, Cyber-
netics 26:29-41,1996.

[4] L.M. Gambardella and M. Dorigo. Ant-Q:
A Reinforcement Learning Approach to the
Traveling Salesman Problem. In Proceedings of



[10]

[11]

[12]

the Eleventh International Conference on Ma-
chine Learning, pp. 252-260, 1995.

L.M. Gambardella and M. Darigo. Solving
Symmetric and Asymmetric TSPs by Ant
Colonies. In Proceedings of the IEEE Interna-
tional Conference on Ewvolutionary Computa-
tion , pp.622-627, 1996.

M. Dorigo and L.M. Gambardella. Ant Colony
System: A Cooperative Learning Approach to
the Traveling Salesman Problem. IEEE Trans-
actions on Evolutionary Computation, 1:53-66,
1997.

T. Stiitzle and H.H. Hoos. The MAX-MIN
Ant System and Local Search for the Trav-
eling Salesman Problem. Proceedings of the
IEEFE International Conference on Evolution-
anj Computation, pp.309-314,1997.

M. Dorigo, L. M. Gambardella. Ant Colony
System: A Cooperative Learning Approach to
the Traveling Salesman Problem, IEEE Trans-
actions on Fvolutionary Computation,pp.53-
66,1997.

L. M. Gambardella, M. Dorigo. Solving Sym-
metric and Asymmetric TSPs by Ant Colonies,
Proceedings of the IEEE Conference on Evolu-
tionary Computation, pp.622-627,1996.

M. Dorigo, L. M. Gambardella. Ant
Colonies for the Traveling Salesman Prob-
lem, BioSystems 43:73- 81, 1997.
B.Bullnheimer, R. F.Hartl,& C.Strauss. An
improved Ant System algorithm for the vehi-
cle routing problem. (Tech. Rep. POM-10/97).
Vienna, Austria: University of Vienna, Insti-
tute of Management Science, 1997.
B.Bullnheimer, R. F.Hartl, & Strauss, C. Ap-
plying the Ant System to the vehicle rout-
ing problem. Meta-heuristics: Advances and
trends in local search paradigms for optimiza-
tion, pp. 109-120,1998.

L.M. Gambardella, E. Taillard, and G. Agazzi.
MACS-VRPTW: a multiple ant colony system
for vehicle routing problems with time win-
dows. In New ideas in optimization. pp.63-76,
1999.

John E. Bell and Patrick R. McMullen. Ant
colony optimization techniques for the vehi-
cle routing problem. Advanced Engineering
Informatics,18:41-48, 2004.

Silvia Mazzeo and Irene Loiseau. An Ant
Colony Algorithm for the Capacitated Vehicle
Routing. FElectronic Notes in Discrete Mathe-
matics, 18:181-186, 2004.

R. Montemanni, L. Gambardella, A. Rizzoli,
and A. Donati. A new algorithm for a dynamic

vehicle routing problem based on ant colony
system.In Second International Workshop on
Freight Transportation and Logistics, 2003.

E. D.Taillard, Parallel iterative search meth-
ods for vehicle routing problems. Networks
,23:661-673,1993.

Y.Rochat,and E. D.Taillard: Probabilistic
Diversification and Intensification in Local
Search for Vehicle Routing. Journal of Heuris-
tics 1:147-167, 1995.

M. Dorigo, V. Maniezzo and A. Colorni. Ant
System: Optimization by a Colony of Cooper-
ating Agents,IFEE Trans. Sys., Man, Cyber-
netics 26,1996.

Gendreau, M., Hertz, A. and Laporte, G.:A
tabu search heuristic for the vehicle rout-
ing problem.Management Science 40:1276-
1290,1994.

I. H.Osman,:Metastrategy simulated anneal-
ing and tabu search algorithms for the vehi-
cle routing problem.Annals of Operations Re-
search 41:421-451,1993.
N.Christofides,A.Mingozzi and P.Toth: The
vehicle routing problem. Combinatorial Opti-
mization. Wiley, Chicester,1979.



