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Abstract 
Finding the concepts in formal concept context is 
time-consuming, which is a NP problem. In this paper, 
hierarching conceptual clustering analysis based on 
distance function  is investigated, under this clustering, 
we only check the some subset of feature set instead of 
all of them, which largely reduces the computing steps 
in finding the concepts, we pave a way to explore 
concept lattice with clustering approaches. 
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1. Introduction 
Concept Lattices are used to represent conceptual 
hierarchies which are inherent in data. They are the 
core of the mathematical theory of Formal Concept 
Analysis (FCA). Introduced in the early 1980s as a 
formalization of the concept of `concept' [10], FCA 
has over the years grown to a powerful theory for data 
analysis, information retrieval, and knowledge 
discovery [11]. In artificial intelligence (AI), FCA is 
used as a knowledge representation mechanism [12] 
and as conceptual clustering method [9] for crisp 
concepts. In database theory, FCA has been 
extensively used for class hierarchy design and 
management [13]- [15]. Its usefulness for the analysis 
of data stored in relational databases has been 
demonstrated with the commercially used 
management system TOSCANA for Conceptual 
Information Systems [17]. FCA is a branch of lattice 
theory motivated by the need for a clear 
mathematization of the notions of concept and 
conceptual hierarchy [6]- [8], and knowledge 
acquisition [9].  

The clustering can be roughly divided into two 
categories. One category,based on objective functions.  
Another category is based on a relation matrix such as 
correlation coefficient, equivalence relation, similarity 
relation and fuzzy relations, etc, agglomerative 
hierarchical clustering method belongs to the second 
type, it is simple and useful in application system. The 
investigate in this paper focus on this type of 

clustering, we cluster the objects in concept lattice into 
groups, thus we avoid the heavy burden computing of  
every subsets of feature sets with a definite subset of 
objects, this builds a bridge between concept analysis 
with clustering.Fuzzy clustering and concept analysis 
have been explored [1]-[5], this paper explores the 
connection further. 
     The paper is organized as follows. Section 2 
presents some preliminary notions about formal 
concept analysis. Some related facts Similarity 
Measure are proposed in section 3, In section 4, we 
give an overview about hierarchical conceptual 
clustering, the main contribution in the concept 
searching method by similarity measure is show in 
section 5, Section 6 provides us with an illustrative 
example. Finally, we conclude this paper with section 
7.  

2. Concept lattice theory 
Definition 1 (B.Ganter,R.Wille,Formal [6]) A formal 
context is a triple concept (G,M,I) where G is a set of 
objects, M is a set of attributes, and I is a binary 
relation from G to M, i.e. I⊆G×M, gIm is also written 
as (g, m) ∈I, means that the object g possesses the 
attribute m, g∈G, m∈M.  For a set of objects A⊆G, 
β(A) is defined as the set of attributes shared by all 
objects in A, that is, 
              β (A)={m∈M | (g, m)∈I, ∀g∈A} 
Similarly, for B⊆M, α(B) is defined as the set of 
objects possesses all attributes in B, that is, 

α(B)={g∈G | (g, m) ∈I, ∀m∈B} 
 

Definition 2 (B.Ganter,R.Wille, Formal [6]) A formal 
concept of the context (G,M,I) is a pair (A,B) with 
A⊆G,B⊆M and β(A)=B, α(B)=A. We call A the 
extent of and B the intent of the concept (A,B)，
B(G,M,I) denotes the  set of all concepts of the context 
(G,M,I) 

 
Table 1 shows an example of a context. 

 



 
 
 
 
 
 
 

Table 1: Attributes and objects of  a context. 
 
Example 1  
Let M={m1,m2,m3,m4,m5}, G={g1,g2,g3,g4,g5,g6} 
As α(m1,m2)= α(m1)∩α(m2)= {g2,g3}, and 
β(g2,g3)={ m1, m2, m3,m4},thus ({g2, g3},{m1,m2}) is 
not a concept of (G, M, I).           
α({m3,m4,m5})={g1},β({g1})={m3,m4,m5},therefore the 
pair ({g1},{m3,m4,m5}) is a concept. 
 
Lemma 1 (B. Ganter, R.Wille, Formal [6]) Let (G, M, I) be 
a context, The following assertions hold: 
1) For every A1, A2⊆G,A1⊆A2, implies that β(A2)⊆ 
β(A1), and for every B1, B2⊆M, B1⊆B2, implies α(B2) 
⊆α(B1). 
2) For any A⊆G, A⊆α(β(A)) and β(A)= β(α(β(A))); 
For any B⊆M, and B⊆β(α(B)) and α(B)= α(β(α(B))). 
 
Definition 3[3] (G,M,I) is a formal context, for x, 
y∈G,B⊆M ,distance function d, induced by  B, is 
defined like this; 
d(x, y)=⎪(((β(x)c∩(β(y)))∪ (β(y)c∩(β(x)))∩B⎪⁄⎪B⎪. 

 
Theorem 1[3] The function defined above is a 
distance function which satisfies; 
For all x, y, z∈G 
(1) 1≥d(x, y)≥0 and d(x, y)=0 ⇒ x∈α(B) if and only if  

y∈α(B).For x∈α(B) and y∈α(B) ,d(x, y)=0. 
(2) d(x, y)=d(y, x) 
(3) d(x, z)≤d(x, y)+d(y, z). 
 
Now, we give an example about this 
Example 2  
 
Table 2 gives an example of a context. 

 
 
 
 
 
 
 

Table 2: Attributes and objects of  a context. 
 
Let B={ m2, m3},By simple computing, we can get that  
d(g1, g2)=1/2, d(g1, g3)=1/2, d(g1, g4)=1/2, d(g2, g3)=0, 
d(g2, g4)=1, d(g3, g4)=1 As ({g2, g3},{ m2, m3}) is a 
concept, thus d(g2, g3)=0.In fact, we can get all subset 
of M easily, if for one set N⊆M, there exists an 

element s∈α(B) such that d(s, t)=0 for some t∈G, then 
all such t and s form the extent with N as the intent, if 
d(s, t)≠0 for all t∈G, then N  is not a intent at all. 

3. Similarity measure 
Distance functions play a major role in pattern 
recognition and data analysis [1]-[4]. When each 
object is described with respect to quantitative feature 
variables, Minkowski metrics are often used as 
convenient dissimilarity measures in classification 
methods. Distance functions depend on the space 
which the objects lie in, but in some case, the space is 
not Euclidean space, thus we should use the key core 
of distance function, in fact, the main idea of it is that 
it acts as a “separation” function, for example, when 
two persons A and B are under consideration, the 
distance is not a metric one, feature A={high salary, 
good health condition, low height, regular education 
background, mastering of English and Chinese}, 
feature B={low salary, good health condition, low 
height, irregular education background, mastering of 
English and Chinese and French},the we learn that 
the features set {good health condition, low height} is 
common to all, and it has no difference in separating  
A and B, {high salary, regular education background, 
mastering of English and Chinese}∉B, but {high 
salary, regular education background, mastering of 
English and Chinese}∈A, while{low salary, 
irregular education background, mastering of 
English and Chinese and French}∈B, but {low 
salary, irregular education background, mastering of 
English and Chinese and French}∉A.then we can 
deem that the distance is 6. 
Definition 4 A Dissimilarity Measure(DM) d on X 

d: X×X→R 
Where R is the set of real numbers, such that 
∃d0∈R: d(x, x)= d0, and d(x, y)= d(y, x),for x, y∈X ,if 
in addition 
 d(x, y)= d0 if and only if x=y and d(x, y)≤d(x, z)+d(z, y) 
then d is called a metric DM. 
Definition 5 A Similarity measure(SM) s on X 

s: X×X→R 
Where R is the set of real numbers, such that 
∃d0∈R: s(x, x)= d0, and s(x, y)= s(y, x),for x, y∈X ,if in 
addition s(x, y)= d0 if and only if x=y and  

s(x, y) s(y, z)≤[s(x, y)+s(y ,z)] s(x, z) then d 
is called a metric SM. 
We note that if we let s(x, y)=1/ d(x, y)( d(x, y)≠0),then 
it satisfies the above triangular inequality. 

The common way of constructing Similarity 
Measure is like this, Let X be the object set, d(x, y) is 
the distance function, let 

s(x, y)=1− d(x, y)/(maxx,y∈X(d(x, y))). 
Then it is a Similarity measure. 

 m1 m2 m3 m4 m5 
g1 0 0 1 1 1 
g2 1 1 1 1 0 
g3 1 1 1 1 0 
g4 1 0 0 0 1 
g5 1 0 0 0 1 
g6 1 0 0 0 1 

 m1 m2 m3 m4 
g1 1 1 0 0 
g2 0 1 1 0 
g3 1 1 1 0 
g4 0 0 0 1 



      As to similarity measure and distance function, 
one derives from the other easily.  
 

4. Hierarchical conceptual 
clustering 

The basic idea behind agglomerative clustering is 
simple. Start each objects in its own separate cluster 
(i.e.,n clusters of size).At each stage of the process, 
find two “closest” clusters and join them together. 
Continue until one cluster of size n remains. The 
algorithm is simple and efficient. There are several 
kinds clustering 

1 SINGLE-LINKAGE CLUSTERING.( Shortest 
distance) 

2  COMPLETE LINKAGE (Largest distance) 
3  Average Linkage(Average distance) 
4  Centroid Method(Centroid distance) 

            5  Ward’s Method(Incremental sum of squares) 
All of the approaches are agglomerative in nature 
and produce hierarchical clustering solutions, the 
main difference among them is that the distance 
function defined, now we give a general overview 
of the methods, here we only give the case 1,the rest 
can be obtained by modifying step 3. 
 
Single-Linkage Clustering 
 
Step 0.Let C1 , C2 , C3 , …Cn  be the clusters, the 

distance between two clusters is defined to 
be the distance between the two objects they 
contain; that is 

dCiCj= dij 
Let t=1 be an index of the iterative process 
Step 1.Find the smallest distance between any two 

clusters. Denote these two closest clusters 
Ci , Cj. 

Step 2.Amalgamate clusters Ci and  Cj to form a 
new cluster denoted Cn+I 

Step 3.Denote the distance between new cluster Cn+I  
and all the remaining clusters Ck as follows: 

                 },min{
kjkikin CCCCCC ddd =

+
 

Step 4.Add cluster Cn+I  as a new cluster and remove 
clusters Ci and  Cj .Let t=t+1. 

Step 5.Return to step 1 until one cluster remains. 
As to case 2, dCn+iCk is replaced by 

},max{
kjki CCCC dd , the rest steps remained 

unchanged.While in case 3, dCn+iCk is defined as 
follows 
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Where ni , nj is the number of elements contained in Ci  
and Cj respectively. The Centroid Method designs the 
distance function like this 
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5 The concept searching method by 
similarity measure  

Not every pair of a set of objects and a set of features 
defines a concept, suppose (G, M, I) is a formal 
context, and |G|=n, |M|=m, the non empty subset of G 
is 2n−1, the non empty subset of M is 2m−1,for set 
A⊆G, B⊆M, to get a concept (A, B),we should check 
β(A)= B and A=α(B). Finding all concepts need at 
least N(m, n)=2∗(2n−1) ∗(2m−1) steps, for example, as 
m=n=5, N(m, n)=1922, when m and n increase, the 
computing is time -consuming. Until now, no best way 
has been designed to cope with problem thoroughly, in 
[13], some important concepts according to the 
support and confidence rate are considered, this 
reduces the computing steps, but it sacrifices the 
number of all concepts, it means that some concepts 
has to be omitted, now we proposed a way to consider 
all concepts by cutting down the unnecessary 
computing steps beforehand, we first cluster the 
objects into groups according to some feature set B , 
then α(B) will fall to the groups, by checking the 
member of the groups, we get the desired α(B),in this 
way, we not only reduce the computing steps, but get 
all the concepts as well. Now we present the 
algorithms in detail.  
 
Algorithm 

1. Find all subset of M, denote by 2M. 
2. Based on Theorem 2,choose feature sets 

B,computing distance matrix DB =(dij) ,where 
dij=d(xi, xj),pick the elements from the upper 
triangle above main diagonal as the  distance 
input. 

3. For all B∈2M.Generate the hierarchical 
cluster tree, that is the Plot Dendrogram 
Graph.  

4. Discard the unrelated clusters. 
5. end 
6. Return 3 

6 Some illustrative examples  

Let G={x1 ,x2, x3,x4}, M={a, b, c, d, e, f, g, h},choose 
B={ c, e},for the convenience of computing, denote it 
as vector [0 0 1 0 1 0 0 0]. 
 

         Table 3 shows an example of a context 
 
 



 a b c d e f g h 
x1 0 1 0 0 0 0 1 1 
x2 0 0 1 1 1 1 0 0 
x3 0 0 1 0 1 0 1 1 
x4 1 0 1 0 0 0 0 0 

Table 3:  Attributes and objects of  a context. 
 
The matrix DB is 
     

DB=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2353
3244
5426
3462

 

 
                                      

 

 
 

Fig. 1: Extent of B={ c, e}. 
 

  
 
Fig. 2: Extent of B={ a}. 
 
In  Fig 1, we use single-linkage to generate the 
dendrogram, a vertical line at distance d yields 
partitions as follows: 

                0≤d<2⇒{x2},{x3},{x1},{x4}, 
2≤d<3⇒{x2, x3},{x1},{x4}, 

Here we choose d=2.5,it joins objects x2, x3 together, 
therefore, the candidate sets for feature {a, c} are {x2, 
x3},{x1},{x4},it is easy to discard {x1},{x4},thus we get 
the concept ({ x2, x3}, {a, c}), if we select B={a},from 
Fig 2, we have clusters {x1, x2, x3},{x4}, after 
discarding {x1, x2, x3}, the concept ({x4},{a}) is 
obtained. Here the “single” distance function is used, 
if it is replaced by “complete” or “average”, the same 
results can be followed. 

Let start another experiment which appear in [6],it 
is a context of an educational film “Living Beings and 
Water”.The attributes are a:needs water to live,b:living 
in water,c:lives on land,d:needs chorophyll to produce 
food,e:two seed leaves,g:can move around,h:has limbs, 
i:suckles its offerspring 

There are 28−1=255 subsets of objects, 29−1=551 
subsets of attributes, there are (28−1)*( 29−1)=140505 
couples (A, B) where A⊆G, B⊆M， if β(A)=B, α(B)=A 
holds,then (A, B) is a concept in formal context. 
 
               Table 4 shows an example of a context. 
 
  a b c d e f g h i
1 Leech 1 1 0 0 0 0 1 0 0
2 Bream 1 1 0 0 0 0 1 1 0
3 Frog 1 1 1 0 0 0 1 1 0
4 Dog 1 0 1 0 0 0 1 1 1
5 Spike-weed 1 1 0 1 0 1 0 0 0
6 Reed 1 1 1 1 0 1 0 0 0
7 Bean 1 0 1 1 1 0 0 0 0
8 Maize 1 0 1 1 0 1 0 0 0

 
Table 4: Attributes and objects of  a context 

 
Let B={a,b},then from Plot Dendrogram Graph,we get 
that 
 

 
 
Fig. 3: Extent of B={ a,b}. 
 
By checking,we get two sets {1 2 3 5 6},{4 7 8},it is 
clear that b∈β({8}),thus ({4 7 8},{a,b}) is not a 
concept,it is easy to check  that ({1 2 3 5 6},{a,b}) is a 
concept. 



Let B={a,c},then from Plot Dendrogram Graph, it 
follows that 
 

 
 
Fig. 4: Extent of B={ a,c}. 

 
By checking,we have that ({3 4 6 7 8},{a,c}) is a 
concept 
Let B={a},then from Plot Dendrogram Graph,we have 
that 
 

 
 
Fig. 5: Extent of B={ a}. 
 
Only one set {1 2 3 4 5 6 7 8} is obtained,it is easy to 
see that ({1 2 3 4 5 6 7 8},{a}) is a concept. 
Let B={a,b,g},then from Plot Dendrogram Graph,we 
see that 
 

 
 
Fig. 6: Extent of B={ a,b,g}. 

 
Four sets {1 2 3},{4},{5 6},{7 8} are created,it is not 
difficult to discard {4},{5 6},{7 8},so ({1 2 3},{a,b,g})  
Is a concept. 
Let B={a,b, d,f},then from Plot Dendrogram Graph, it 
follows  that 
 

 
 
Fig. 7: Extent of B={ a,b,d,f}. 
 
From the five  sets {1 2 3},{4},{5 6},{7},{ 8},it is 
easy to know that  ({5 6},{a,b,d,f}) is a concept. 
Let B={a,b, c,d,f},then from Plot Dendrogram 
Graph,we get that 
 

 
 
Fig. 8: Extent of B={ a,b,c,d,f}. 
 
A vertical line at distance d yields partitions as follows: 
  1.4≤d<1.6⇒{ x1 , x2, x3},{ x5 , x6},{x4, x7,x8} 
As 1,2,5∉α(c) ,therefore,we have 
1.2≤d<1.4⇒{ x1 , x2, x3},{ x5 , x6},{x4, x7},{x8} 

Further,as 4,7,8∉α(b),we have 
1.2≤d<1⇒{ x1 , x2},{ x3},{ x5 },{  x6},{x4},{ x7},{x8} 

Thus,only { x3},{  x6} are considered as the candidate 
ones, it is verified that ({  x6},{a,b, c,d,f}) is the 
desired concept. 
Let B={a,b,d},then from Plot Dendrogram Graph,we 
have that 
 



 
 
Fig. 9: Extent of B={ a,b,d}. 
 
A vertical line at distance d yields partitions as follows: 
  1≤d<1.5⇒{ x1 , x2, x3},{x4},{ x5 , x6},{ x7,x8} 
As 1,2,3,4∉α(d) ,therefore,we have 
0≤d<1⇒{ x1 }{ x2 }{x3},{ x5 }{x6},{x4},{x7},{x8}. 

Thus,only { x5 },{  x6},{ x7},{x8} are considered as the 
candidate ones,it is verified that none of them 
constructs a concept  with {a,b,d}.  
By computing,all concepts are as  follows 
 

Table 5 lists all  structures of concepts in context . 
 

 Extent Intent  
1 {1 2 3 4 5 6 7 8} {a} 
2 {1 2 3 4 } {a g} 
3 {3 4 6 7 8} {a c} 
4 {1 2 3 5 6} {a b} 
5 {5 6 7 8} {a d} 
6 {2 3 4} {a g h} 
7 {3 4} {a c g h} 
8 {1 2 3} {a b g} 
9 {2 3} {a b g h} 
10 {3 6 } {a b c} 
11 {5 6 8} {a d f} 
12 {6 7 8} {a c d} 
13 {5 6} {a b d f} 
14 {6 8} {a c d f} 
15 {7} {a c d e} 
16 {6} {a b c d f} 
17 {4} {a c g h i} 
18 {3} {a b c g h} 

 
Table 5: Extents and intents of  educational film 

7. Conclusions  

In this paper, we created a new clustering based on the 
distance function defined in formal context, with the 
new approaches, the computing steps of finding 
concepts in formal context are reduced, the objects 
sets are located in the clustering exactly, this makes it 
possible for us to find all the concepts relatively easily, 

at the meaning time, a link between concept lattice and 
fuzzy clustering is established. 
 

Acknowledgement 

This work is supported in part by the National Natural 
Science Foundation of China (Grant No.60534010), 
(Grant No.60575039) and in part by the National Key 
Basic Research and Development Program of China 
(Grant No. 2002CB312201-06), and it is supported 
partially by the Natural Science Foundation of 
Liaoning Province (Grant No. 20061046). 
 

References 
[1] X.D. Liu, T.Y. Chai, W. Wang and W.Q. Liu, 

Approaches to the representation and logic 
operations of fuzzy concepts in the framework of 
axiomatic fuzzy set theory  I, Information Science, 
177:1007-1026, 2007. 

[2] X.D. Liu, T.Y.Chai, W.Wang and W.Q.Liu, 
Approaches to the representation and logic 
operations of fuzzy concepts in the framework of 
axiomatic fuzzy set theory  II, Information 
Science, 177: 1027-1045, 2007. 

[3] L.S. Zhang and X.D. Liu, Concept lattice and 
AFS algebra, Lecture notes on computer science, 
LNAI 4223:290-299, 2006. 

[4] L.S. Zhang and X.D. Liu, Concept lattice and its 
topological structure, Proc. of the International 
Conference on Sixth World Congress on 
Intelligent Control and Automation, pp.2633-
2636, 2006. 

[5] L.S. Zhang and X.D. Liu, AFS structures and 
concept lattice, Proc. of the International 
Conference on Sixth World Congress onIntelligent 
Control and Automation, pp. 2541-2545, 2006. 

[6] B. Ganter, R. Wille, Formal concept analysis: 
Mathematical Foundations, Springer, Berlin, 
1999. 

[7] N. Pasquier, Y.Bastide, Y.T. Taouil, Lakhal, 
Efficient mining of association rules using closed 
itemset lattices, Information Systems, 24(1):25-46, 
1999. 

[8] M.J. Zaki, C.T. Ho, Scalable algorithms for 
association mining, IEEE Trans. knowledge Data 
Eng, 12:(2), 372-390, 2000. 

[9] G.W.Mineau, , R Godin,:Automatic structureing 
of knowledge bases by conceptual clustering, 
IEEE Trans. knowledge Data Eng, 7(5): 824-828, 
1995. 

[10] R. Wille, Restructuring lattice theory: an approach 
based on hierarchies of concepts, in: R. Ivan Rival 



(Ed.), Ordered Sets, Reidel, Dordecht, Boston, 
445-470,1982. 

[11] G. Stumme, R. Wille(Eds.), Begriffliche 
Wissensverarbeitung----Methoden und 
Anwendungen, Springer, Heidelberg, 2000. 

[12] R. Wille, Concept lattices and conceptual 
knowledge systems, Computers and Mathematics 
with Applications, 23:493-515,1992. 

[13] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, L. 
Lakhal, Computing iceberg concept lattices with 
TITANIC, Data & Knowledge Engineering  
42:189-222, 2002. 

[14] R.Godin, H.Mili, G.Mineau, R.Missaoui, A.Arfi, 
T.Chau, Design of class hierarchies based on 
concept Galois lattices, TAPOS,4:117-134, 1998. 

[15] M. Missikoff, M.Scholl, An algorithm for 
insertion into a lattice: application to type  
classification, in: Proc.of the 3rd International 
Conference FODO 1989, LNCS 367, Springer, 
Heidelberg,64-82.1989. 

[16] F. Vogt, R. Wille,  TOSCANA----A graphical tool 
for analyzing and exploring data, Lecture notes on 
computer science, LNCS 894:226-233, 1995. 


