
Overview of Security Enhanced Android’s Security Architecture

Chaowen Zheng
Information Engineering University
Computer Science and Technology

Zhengzhou, China
cvhjo@163.com

Abstract—Security Enhanced Android is the integration of
Android with SE Linux launched by NSA to strengthen
security. This system adopting Mandatory Access Control
prevents attacks and enforces application isolation. Also, it
provides an implementation of SE Linux in current Android
environment. Therefore the capabilities of defeating root
overflow attacks and deficiency in applications are
significantly strengthened. In this paper, we discussed the
security mechanisms of SE Android, and introduced the
difficulties and solutions about implementing the system from
the kernel and user space level.

Keywords-Security Enhanced Android; security mechanism;
Mandatory Access Control

I. INTRODUCTION
Based on Linux and mainly used in smart devices,

Android is the most popular open source operating system,
resulting in the great concern about the system’s security.
Access control, malicious code and kernel vulnerabilities
motivate the need to strengthen security mechanisms in the
kernel as well as the user space.

DAC (Discretionary Access Control) is used by Android
to restrict access between apps. Ordinary apps can only
access system resources through system services. Moreover,
DAC isolates apps based on users and groups. Each app is
assigned a unique (user id, group id) pair when installed,
which is used by its all processes and private data files. Only
data owners and app creators have access to the data. But
DAC has many flaws: (1) cannot prevent vulnerabilities, (2)
leaded data by malicious apps, (3) coarse privileges
management, (4) cannot limit or control system daemons,
and (5) cannot prevent malicious behavior with root
privileges.

SE Android (Security Enhanced Android), which was
originally launched in 2012 by the NSA based on SE Linux
(Security Enhanced Linux), is aimed at full compatibility
with the integration of SE Linux and Android.

SE Linux imported MAC (Mandatory Access Control) to
overcome the defect of DAC. MAC provides a more in-
depth authority management, limiting any process including
the root process for all resources access and preventing
privilege escalation. The entire security architecture of SE
Linux is called Flask. Flask’s security policy has four child
policies: Multilevel Security Policy, Type Enforcement
Policy, and Role-based Access Control Policy. Security
access must meet the requirements of each child policy. The
logic and common interfaces of security policy are packaged

in separate components in the operating system. And the
common interfaces are used to obtain security policy
decisions.

SE Linux has three running models: (1) Disabled, namely
disable SE Linux, (2) Permissive, namely enable SE Linux
and record violations without any policy to intercept, and (3)
Enforcing, namely interception model.

From Android 4.3, SE Linux was officially introduced
into Android, running in the permissive mode. The
implementation details are invisible to app developers, and
users can choose whether to enable or not.

II. NEW SECURITY ARCHITECTURE

A. Android’s Security Architecture
Firstly, rights separation. Android requires the

application to provide the user ID and group ID to be
identified, and one application has no valid access to another.
Thus, after the attack on the application, attackers cannot
easily jump to another component.

Secondly, privileges assignment. Apps must be assigned
corresponding privileges to access resources when designed.
When users check privileges when installed, it starts to
function. Specially, it fails when one app wants to run with
root authority on Non-Jail broken device.

Thirdly, applications code signing. All apps must be
signed in order to run, whether the certificate is authoritative
or self-signed.

B. Optimized SE Android’s Security Architecture
SE Android imported the MAC mechanism and added

some new components on the existing Android architecture
without changing original features and attributes. At the
same time, SE Android ensured independent operation of
each app. Currently, SE Android code is open-source. Users
have to recompile the code to use it.

The central idea of SE Android is that even root
permissions are usurped, malicious behaviors also can be
prevented. For example, once the device was jail-broken,
though the su privilege can be achieved, administrators could
also set policies about modifying system files limiting access.

SE Android offered a range of security control
mechanisms, which added different types of mandatory
restrictions on Android permissions model. Currently these
policies include Install-MAC, Intent MAC, Content Provider
MAC, Permission Cancellation and Permission Tab
Propagation.

2nd International Conference on Teaching and Computational Science (ICTCS 2014)

© 2014. The authors - Published by Atlantis Press 48

Firstly, Install-MAC. It means that checking the app’s
claimed permissions through mac_permission.xml file when
installed. Its actions contain allow, deny and allow all
permission. The policy defined the package label and
signature label to specify the security context of apps. But it
only functions on pre-installed applications. All third-party
apps have to be matched by another label-default.

Also, the policy can check the list of permissions one app
requests. Once the request corrupted with the policy, the app
would not be able to be installed. Even if the app had been
installed, if the updated policy conflicted, it also could not
run again. If some permissions weren’t be explicitly declared
as allow by the package label and the signature label or there
existed some unpermitted rights, the pre-installed apps
would update failed; if some permissions were be declared as
deny by the default label, the third-party app would be also
failed to update and run.

Secondly, intent MAC. Its role is to determine whether
one intent can be distributed to other components. It will
block out any disallowed distributions. Now it supports
control of use, read, read and write permissions.

Thirdly, content provider MAC. Its role is to determine
whether a request to access Content Provider is allowed. It
will block out all disallowed requests, supporting control of
use, read, read and write permissions currently.

Fourthly, permission cancellation. It can cancel the app’s
some privileges through authority revocation list when
checking applications’ privileges. The list lies in
external/mac_policy/revoke_permission.xml, and it is for
each app package to maintenance. The xml file defining
revocatory permissions takes effects when system starts.

Lastly, permission tabs propagation. The policy is the
application of stain tracking methods. Android’s permissions
are mapped to one policy configuration file as abstract labels.
Not entirely similar to install-MAC’s policy file, the
configuration file has many different xml tags. Each app’s
original labels are set based on the permissions it gets. When
communications begin between different components, each
app will be “contaminated” because of their own label
collections. If in forced mode, communications would
undermine the policy rules, blocking the traffic.

C. SE Android’s Policy Files
SE Android’s security policies were configured by policy

files.

TABLE I. POLICY FILES TABLE

file notes

seapp_contacts

Located in external/setpolicy,

mark app’s all process and files

property_contacts

Defines different attributes for every system
service

Defines security associations between attributes
to check privileges

mac_permissions.xml
The policy configuration file of install-MAC to

define what types of resources one app can
access

Developers of SE Android are still studying Android’s
security, so these policies are always changing. And these
policies are first to be loaded in the boot procedure.

III. DIFFICULTIES OF IMPORTING SE LINUX
The difficulties lie on the kernel layer and user space.
Firstly, in the kernel layer, SE Linux requires the file

system to support security labelling. However, Android’s file
system was yaffs2, not the mainstream part of Linux kernel.
The system didn’t support extended attributes. Even the
newest version has met it, it still can’t mark newly created
files automatically. In addition, SE Linux doesn’t support
some kernel subsystems and drivers of Android. For example,
some newly created kernel subsystems are responsible for
communications between Android apps and specific
attributes. SE Linux hasn’t supported control of these
subsystems. Thus, SE Linux can’t fully control over all
communications and interfaces.

Secondly, in the user space layer, though Android’s
kernel is based on Linux, Android’s user space is wholly
different from Linux distributions. The work how SE Linux
integrated into Linux user space couldn’t be quoted. Also,
the way by which Android started apps is different form
Linux. The zygote process loaded the Dalvik virtual machine
firstly, then forked a child process for each app upon request
and loaded the app’s private classes into child processes. But
SE Linux normally converts safe environment automatically
when the process is in the execution. It can’t naturally run
apps. Still more, some share supports appear at the
middleware level. But the communication can only been
seen on the kernel level not the middleware level.

Lastly, in the policy configuration, the reference strategy
of SE Linux is based on the user space and method of Linux
distribution. But Android has unique user space and software
stack, and its file system layout and model aren’t compatible
from SE Linux. SE Linux’s strategy is too complex to be
suitable for smart devices. To make things worse, SE
Linux’s strategy requires end users and publishers to
configure and communicate. It wasn’t feasible on Android.

IV. SOLUTIONS TO DIFFICULTIES
In the kernel layer, Android had to add support for SE

Linux kernel, building Android-<board>-<version> branch
for various versions of different hardware platforms. In the
user space, it also had to build branches for different
programs to support apps. What’s more, Android imported
some code libraries and tools.

A. Kernel Changes
Firstly, basic supports added for SE Linux and its file

system. Modify yaffs2 file system’s getattr file, which is
header files listing extended attributes’ values. Modify yaffs2
to make newly created files be automatically set security tabs.

The new Android devices have used the ext4 file system,
supporting extended attributes and security labelling.

Secondly, modify some kernel subsystems, such as
Binder.

Binder is the most original system of communication
between apps. It providers management for multi-process

49

shared elements and support for transparent call for objects.
When system starts, service manager program registers itself
as Binder Context Manager Process via /dev/binder,
providing an interface for apps to call other service requests.
Different android framework service register object
references through service manager. If have received a
pointer to an object reference to another process, the app
would initiate communication on a given Binder object. The
solution is to inset new LSM (Linux Security Module)
security hooks into the binder driver. When the binder is
running, these hooks are used to check permissions,
especially when checking communications between apps.

Anonymous Shared Memory Area is indicated by file
descriptors, and it can be used to support SE Linux. The
ashmem_specific_ioctl command also can be used to view
hook security and check permissions.

B. User Space Changes
Firstly, support for the C language libraries and dynamic

links. SE Linux uses Linux’s system calls for extended
attributes to get and set file security tag. So extend the bionic
file which is implementation of C language library in
Android, and repackage the system calls for extended
attributes. Then modify Android dynamic linker to identify
and use the auxiliary vector AT_SECURE to notify the user
space whether the security space conversion has occurred.

Secondly, add SE Linux’s proprietary libraries and tools.
Select the smallest collection from SE Linux API libraries
that is suitable for Android. And modify the compiler of
libsepol library and libsemanage library to make it available
on the Mac. Then add support for SE Linux on the command
built-in in the init program, and add SE Linux’s tools in the
Android toolbox.

Thirdly, file labelling. Mkyaffs2image and make_ext4fs
tools are responsible for generating Android file system
image. But they didn’t support file security labelling. So
modify them to mark files when establishing the Android file
system and remark installed apps. Also, there being no need
to remark files, extend recovery and update program to
ensure there still exists file labelling.

Fourth, modify initialization process. Extend the init
program to load SE Linux’s strategies prior to other
processes. And extend the uevented program to mark the
device node. Also set the security context of early-init
section in the file init.rc. Finally mark some special system
services.

V. EFFECTS OF SE ANDROID IN SECURITY

A. Prevention of root attacks
SE Android can prevent some root attacks like

GinderBreak and Exploid. For such attempt to exploit

vulnerabilities in net link socket, SE Android can suspend
their attacks.

B. Prevention of app attacks
• Skype. The app’s service is mainly realized by VOIP.

However, Skype didn’t encrypt sensitive user data in
data directories. The information included the user’
data of birth, home address, contacts, chatting logs
and so on. In DAC, the file permissions were
controlled by each app. But in SE Android, the
policy is controlled by policy editors, and act on all
apps. Through assign files unique MLS level, SE
Android ensures that no other app can read or write
files.

• Opera Mobile. The cache files of the app could be
read and written. As like Skype, SE Android can
prevent illegal access.

VI. CONCLUSION
As Android is developing more and more popular not

only in phones but also in smart devices like wearable
devices, protecting the system’s security becomes more and
more important. This paper introduces a new idea about
security mechanism inspired by SE Linux, thus making it
more concrete and feasible. From the kernel layer and the
user space, the paper discusses the changes, difficulties and
solutions to import SE Linux into existing Android
architecture. Finally SE Android takes effects in preventing
some attacks. Now SE Android has been officially imported
into Android devices, we will continue with the study of
seamless integrating SE Android and quest for underlying
security of Android in order to protect the system without
sacrificing some convenience.

REFERENCES
[1] Stephen Smalley, Robert Craig: Security Enhanced (SE) Android:

Bringing Flexible MAC to Android. In: Proceeding of 19th Network
and Distributed System Security Symposium, San Diego (Feb 2012)

[2] Sheran Gunasskera: Android Apps Security. Publishing House of
Electronics Industry, Beijing (2013)

[3] Wu, Q., Zhao, C.-X., G, Y.: Android Secuirty Mechanism and
Application Practices. China Machine Press, Beijing (2013)

[4] William Enck, Damien Octeau, Patrick McDaniel, and Swarat
Chaudhuri: A Study of Android Application Security. In: Proceeding
of 20th USENIX Security Symposium, San Francisco (August 2012)

[5] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, David Wagner:
AdDroid Privilege Separation for Applications and Advertisers in
Android. In: Proceeding of 7th ACM Symposium on Information,
Computer and Communication Security (May 2012)

[6] “what is SE for Android”, [Online] Available:
http://selinuxproject.org/page/SEforAndroid (Feb 2, 2014)

[7] “Validating Security-Enhanced Linux in Android”, [Online]
Available: http://source.android.com/devices/tech/security/se-
linux.html#introduction (Feb 3, 2014)

50

