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Abstract—A unified view of the area of joint sparse recovery is 
presented for the weighted L2,1 minimization. The support 
invariance transformation (SIT) is discussed to insure that the 
proposed scheme does not change the support of the sparse 
signal. The proposed weighted L2,1 minimization framework 
utilizes a support-related weighted matrix to differentiate each 
potential position, resulting in a favorable situation that larger 
weights are assigned at those positions where indices of the 
corresponding bases are more likely to be outside of the row 
support so that the solution at those positions are close to zero. 
Therefore, the weighted L2,1 minimization prefers to allot the 
received energy to those positions where indices of the 
corresponding bases are inside of the row support, which 
further improves the sparseness of the solution. The 
simulations demonstrate that the weighted L2,1 minimization 
reaches the strong recover threshold with lower SNR and 
fewer measurements. 
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I. INTRODUCTION  
The sparse recovery can be seen as a process that allots 

the received energy to the corresponding bases that are 
subject to the given constraint, which only those bases whose 
indices are inside of the support are considered as a correct 
situation. For the regular 1l  minimization every basis has 
same priority class when the received energy is assigned. For 
the weighted 1l  minimization, however, every basis has 
different priority class that is materialized with different 
weights when the received energy is assigned. Those bases 
whose indices are inside of the support has a priority by 
employing small weights, while other bases whose indices 
are more likely to be outside of the support are refused to 
assign the received energy by employing large weights [1-5]. 
Compared with the regular  1l  minimization, the weighted 

1l  minimization not only avoids the disadvantage of the 
dependence on magnitude of the regular 1l  minimization but 
also further promotes the sparseness of the solution and 
improves the performance [1-5]. It is proved that, for a 
nontrivial class of signals, the methodology of the weighted  

1l  minimization can enhance the recoverable sparsity 
thresholds upon the regular 1l  minimization [3]. In addition, 
Needell provided the provable results that the weighted 

1l minimization improves the recovery accuracy in the noisy 
case [4]. 

Obviously, designing the support-related weighted matrix 
is essential in order to achieve the methodology of the 
weighted 1l   minimization. For example, the iterative 

reweighted 1l  minimization that was presented to deal with 
the Single Measurement Vector (SMV) problem employs the 
iterative process to appoint larger weights to those locations 
whose indices are more likely to be outside of the support [1]. 
In this paper, however, we focus on the Multiple 
Measurement Vectors (MMV) problem that has many 
applications in the areas of array processing [6-10], 
nonparametric spectrum analysis of time series [11], 
equalization of sparse communication channels [12].  We 
firstly define the support invariance transformation (SIT) that 
the support of the sparse signal is invariant when the 
weighted processing about the sparse signal is employed to 
improve the performance. We give a proposition to insure 
the proposed scheme is SIT in terms of the sparse signal. 
Next, for designing a weighted 2,1l  minimization scheme 
(the mixed norm 2,1l  norm can be regarded as the 
counterpart of the 1l norm in the MMV case), the methods 
of spectral analysis that can obtain the estimates of the power 
spectra of signal upon given bases (e.g., the Bartlett [11], 
[13]) is employed to gain the support-related weighted 
matrix. As a result, the proposed method appoints larger 
weights to the elements whose indices are more likely to be 
outside of the support of sparse signal so that the received 
energy is not projected onto the corresponding bases, which 
promotes the sparseness of the solution. The simulations 
demonstrate that the proposed methods outperform the 1l -
SVD algorithm and some existing sparse recovery 
algorithms. 

The outline of this paper is stated as follows. In the next 
section, we discuss SIT in terms of the sparse signal. In 
Section III , we formulate the weighted 2,1l -SVD algorithm. 
In Section IV, numerical experiments are provided for 
illustrating the performance of the proposed methods. A 
conclusion is given in Section V. 

II. SUPPORT INVARIANCE TRANSFORMATION 
The measurements with the MMV of time series can be 

written as 

( ) ( ) ( ), 1, 2, , .t t t t T= +  =y Ax n L            (1) 

where 1[ , , , , ] M K
k K

×= ∈A a a aL L F , = �F or � , is an 
overcomplete basis matrix, the vector 1( ) Kt ×∈x F  is the 
jointly-sparse signals that the indices of non-zero rows of 

( )tx   do not change with various sample time t  [6], the 
vector 1( ) Mt ×∈n F  denotes an additive noise vector with 
zero-mean and variance 2σ , especially we only consider the 
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case for T M≥  in this paper. Without loss of generality, the 
additive noise  ( )tn  is assumed to be uncorrelated with the 
jointly-spares signals   ( )tx  . 

Equation (1) can be expressed in matrix form: 

.= +Y AX N                                       (2) 

The support of the joint sparse signals can be defined as 
[14]: 

   2( )Supp { 0} ,kk= ≠ ΛX l �∣                         (3) 

where 
2( )

kX l

 denotes the thk  entry of 2( )X l ,  2( )X l is a 

column vector whose thk  elements denotes the 2l  norm of 
thk row of X , {, , }KΛ ⊆ L   and its cardinality PΛ = .  

Based on the definition of the support, (2) can be rewritten as 
[15], [16] 

,Λ Λ= +Y A X N                               (4) 

where ΛA   denotes the matrix composed of the columns 
of A  indexed by the set Λ  and ΛX  is the matrix composed 
of the rows of  X  indexed by the set  Λ . 

By solving a Least Square (LS) problem, the solution 
ΛX  can be obtained [5], [6], [15], [16] 

†( ) ,Λ Λ=X A Y                                (5) 

where the sign †( )⋅  denotes the Moore-Penrose pseudoinverse. 
Therefore, the core of the sparse signal reconstruction is how 
to determine the row support Λ . In practice, we can use 
some transformations that do not change the set Λ to obtain 
some gains. For example, in the MMV case the joint SVD 
processing achieves the joint-time processing that does not 
change the support of the jointly-sparse signals, meanwhile it 
reduces the number of problems from T  to P  
forT M P≥ > . 

Definition 1: Suppose that { ( ), 1, , }t t T=x L is a sequence 
of jointly-sparse signals with a common support Λ  and X  
is its matrix form. A transformation ( )XT   is called as 
Support Invariance Transformation in terms of X , if and 
only if Supp( ( )) Supp( )≡X XT , where Supp( ( ))XT  denote 
the support of  ( )XT . 

In the following subsection, we prove the weighting 
processing is a SIT. 

Proposition 1: The transformation 2( )( )W =X WX lT  is a 
SIT in terms of X , where W  is a diagonal matrix and its 
diagonal elements 0kw > . 

Proof: Obviously, 2( ) 0k kw ≠X l  for 2( ) 0k ≠X l  and 
2( ) 0k kw =X l  for 2( ) 0k =X l , i.e., Supp( ( ))W = ΛXT , where 

2( )( )W =X WX lT  . �  
As an example, the iterative reweighted transformation in 

[1] is a SIT in terms of X  for 1T = . Its weights can be 
written as 1 (| | )k kw x ε= + , where | |kx  and kw   denote the 

absolute value of the thk  coefficient of the sparse signal and 
the corresponding weight value, the parameter ε  can avoid 
the undefined weight value when kx  is the zero-valued 
component [1]. 

Based on the Proposition 1, we conclude that the 
transformation (( ))W XT  does not change the support of the 
jointly-sparse signals. Using this conclusion, we propose a 
unified approach to the weighted 2,1l  minimization to handle 
the recovery problem of the jointly-sparse signals in the 
following section. 

III. WEIGHTED 2,1l -SVD ALGORITHM 

In [7-9] the truncated Singular Value Decomposition 
(SVD) was exploited to hold the principal components on the 
measurements Y : 

SV ,P P= =Y UΣD YVD                              (6) 

where H=Y UΣV , the sign H( )⋅  denotes the conjugate 
transpose, the non-zero entries of M T×∈Σ �  are equal to the 
singular values of Y ; the columns of M M×∈U F  and 

T T×∈V F  are, respectively, left singular vectors and right 
singular vectors for corresponding singular values; 

[ ; ]P P=D I 0 where PI  is a P P× identity matrix and 0  is a 
( )T P P− ×  matrix of zeroes. Consequently, the jointly-
sparse signals X  is transformed with ( )SVD XT  to reduce the 
computation complexity, where SV( )SVD P= =X X XVDT . 

For the MMV case, the correlation matrix of the 
measurements can be obtained by the result of the SVD of 
the measurements. Then we try to exploit the Bartlett and 
Capon spectra estimate that utilize the correlation matrix or 
its inverse matrix to design the weighted matrix.  The 
correlation matrix of the measurements can be written with 
the following equation 

H H H1 1E{ ( ) ( )} ( )( ) ,t t
T T

= = 2
MR y y UΣV UΣV UΣ U�   (7) 

where it is noted that U   and V  are the unitary matrix, 
the first  M  columns of Σ  constitutes the diagonal 
matrix MΣ . 

The inverse of  R  can be expressed as: 
1 H 1 H( ) .T T− − −=2 2

M MR UΣ U UΣ U�                   (8) 

The output power of the Bartlett and Capon filers is 
given by [13] 

H 2 2 2 H( ) E{ ( ) } E{ ( ) } ,k kp t x t σ= = +a h y h h∣ ∣ ∣ ∣        (9) 

where h  denotes the response of the filter, especially  
/b k M=h a  for Bartlett filter [13] 

and 1 H 1( )c k k k
− −=h R a a R a  for Capon filter [11], [13],  ( )kx t  

is the thk  row of the joint-sparse signals ( )tx . Broadly 
speaking, the classical Bartlett and Capon methods can be 
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interpreted as computing the value of the power of the 
measurements at the given basis ka . Therefore, the expected 
output power of the Bartlett filter at the given basis ka  can 
be written as [13] 

H H H
2 2

1 1( ) .b k k k k kp
M TM

= 2
Ma a Ra a UΣ U a�           (10) 

Similarly, the expected output power of the Capon filter 
at the given basis can be express as [13] 

H 1 H H

1 1( ) .c k
k k k k

p − −= 2
M

a
a R a a UΣ U a

�                  (11) 

We define the weight on the thk  row of the joint-sparse 
signals as 

2 2 H

1 1 ,
( ) (E{ ( ) } )

k
k k

w
Tp T x t σ

= =
+a h h∣ ∣

       (12) 

where ( ) ( )k b kp p=a a  for Bartlett filter or 
( ) ( )k c kp p=a a  for Capon filter. Obviously, the item 
2 Hσ h h  in (12) avoids the infinite weight phenomenon that is 

infeasible in practice. And then we can design a weighted 
matrix W , 

 1{ , , , , }.k Kdiag w w w=W L L                    (13) 

Because each weight 0kw >  is the inverse of ( )kTp a , 
larger weights are appointed to those elements whose indices 
are more likely to be outside of the support. It can avoid the 
phenomena of the spurious peaks that some energy is allotted 
to those positions where the indices of those bases should be 
outside of the support. 

 
Figure 1.  The entire flow of the proposed algorithm. 

Now, we can find the sparse solution by the unified 
approach: 

2 2
1 SV SV F( ( )) �  m . ,i   n .W SVD s t β− ≤X Y AX‖ ‖ ‖ ‖T T   (14) 

where 1 | [ ] |i
i

⋅ ⋅∑�‖‖  and 2 2
FPβ ≥ NVD‖ ‖  [8] is a 

regularization parameter (see [8] for details to determine the 
regularization parameter 2β ). In practice, the indices of the 
P  peaks in the solution 2( )

SVX l  are chose as the estimate of 
the support set. We illustrate the entire flow of the proposed 
algorithm in Fig.1. We call the weighted 2,1l -SVD that uses 
the Bartlett filter as BW- 2,1l -SVD. Similarly, the weighted 

2,1l -SVD is called as CW- 2,1l -SVD if the Capon filter is 
used, which was proposed in [17].  

IV. SIMULATIONS 
In this section, we use several experimental results to 

demonstrate our weighted 2,1l  minimization scheme for the 
MMV case. We consider a sparse matrix K T×∈X �  with P  
non-zero rows that their indices are chosen randomly, and 
the amplitude of each non-zero element is chosen randomly 
from a symmetric Bernoulli 1±  distribution. The 
overcomplete basis matrix M K×∈A �  is a random matrix 
with i.i.d. Gaussian entries, and its columns are normalized. 
We select the indices corresponding to  P  peaks in the 
solution 2( )

SVX l  as the estimate of the support Λ . Specially, 
the estimate of the row support is regarded as a successful 
estimate if and only if it is fully consistent with the true row 
support. We explore the strong recover threshold that a 
recover scheme can obtain the row support with certainty [5]. 
For example, for fixed M , K , P , and T , the lowest SNR 
that always obtains the correct estimate of the row support is 
called the strong recover threshold of SNR for the 2,1l  
minimization. For illustrating the advantages of the proposed 
weighted scheme we compare the strong recover threshold 
obtained using the proposed algorithms with those of M-
FOCUSS [6] and 1l -SVD algorithm [7-9].  

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

Pr
ob

ab
ilit

y 
of

 s
uc

ce
ss

 

 

M-FOCUSS
L1-SVD
BW-L21-SVD
CW-L21-SVD

 
Figure 2.  Probability of success versus SNR. Each point is average of 

1000 Monte-Carlo trials and the number of time samples is 50. 

In Fig.2, we consider the strong recover threshold of 
SNR. The simulation conditions are set as follow: 10M = , 

30K = , 5P = , and 50T = . The strong recover threshold of 
SNR is 12dB for the proposed weighted 2,1l  minimization 
under the given conditions, while 1l -SVD that solves a 
regular 1l  minimization reach the strong recover threshold 
of SNR when SNR is more than 20dB, i.e., the requirement 
of SNR can be reduced due to the weighted scheme effect. It 
is worth mentioning that M-FOCUSS that solves a 
reweighted 2l  minimization reach the strong recover 
threshold with higher SNR than the proposed methods. 
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Similarly, Candes et al also observed that reweighted 1l  
minimization is more powerful in recovering sparse signals 
than the FOCUSS algorithm because the unweighted 2l  
minimization has not the natural tendency of sparsity-
promoting while unweighted 1l  minimization does [1].  

V. CONCLUSION 
In this paper, we first define SIT and prove the weighted 

scheme does change the support. Then, we designed a 
unified framework for the weighted 2,1l  minimization to 
improve the performance of the 1l -SVD algorithm.  We 
used the strong recover threshold as the criteria to compare 
the proposed weighted 2,1l -SVD with other algorithms. 
Several advantages can be gained by using the proposed 
weighted scheme, e.g., decreased the requirement of SNR for 
reaching the strong recover threshold.  
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