
Design and Implementation of Lightweight RMI Framework Based On HTTP
Tunnel

Long-da Huang
Power Automation Department

China Electric Power Research Institute
Nanjing, China

huanglongda@epri.sgcc.com.cn

Su-yan Long
Power Automation Department

China Electric Power Research Institute
Nanjing, China

longsuyan@epri.sgcc.com.cn

Jin Liu
Jincheng College

Nanjing University of Aeronautics and Astronautics
Nanjing, China

liujin_jc@nuaa.edu.cn

Jun-song Wang
Institute of Computing & Software

Nanjing College of Information Technology
Nanjing, China

wangjs@njcit.cn

Abstract—Java RMI has greatly enhanced the ability to
develop java distributed applications, but it is still difficult
when passeing through the enterprise firewalls in the public
network. Meanwhile, it need extra deployment and registry
besides application programs deployment. The paper
designed and implemented a lightweight RMI framework,
whose communication protocol used HTTP to replace
JRMP to solve the above problems.The framework is
designed on the base of java proxy pattern and is
implemented by the technology of java object tunnel based
on HTTP protocol and java object serialization. The
communication of the framework between the client and the
server is through the HTTP protocol port, so the framework
can easily go through the firewalls of the enterprise. The
skeleton in the server-side is implemented through java
Servlet technology, and it can conviently be deployed as an
popular web application in the web container. The
lightweight RMI framework is used well in the application
system.

Keywords- RMI; Proxy Pattern; HTTP Protocol;Java
Object Tunnel; Java Object Serialization;

I. INTRODUCTION
With the rapid development of Internet, the world has

entered the web-centric age, and distributed computing has
become a hot topic in the computer research areas. Java
RMI (Remote Method Invocation) has been widely used in
the enterprise application development because of the
advantages of cross-platform, high portability, security etc.
RMI use JRMP (Java Remote Method Protocol), the
client-side stub and the server-side skeleton. JRMP act as
the media of customer objects and remote objects, which
intercepts client requests, passing the call parameters, the
request will be entrusted to the skeleton, and finally the
return value is passed to the client stub [1-3]. Because this
mechanism ignores the specific network details, the
network system design has brought great convenience.
RMI program development requires strict accordance with
the design rules, for instance, after the definition of RMI
remote interface, you also need to use rmic tool to generate
server skeletons and client stubs, and then implement and

register the interface in the server side [4], so the interface
can be used in the client side. This series makes the
process more complicated to use the traditional RMI, but
also it will encounter difficulties in crossing the enterprise
firewalls. In order to solve the above problems, a
lightweight framework is proposed. It is designed on the
base of java proxy pattern, and is implemented by the
technology of java object tunnel based on the HTTP
protocol and java object serialization. The lightweight
RMI framework mainly uses java proxy pattern, java
serialization, java Servlet and java reflection etc., which
provides a programming interface in the client side, and
offers skeleton in the server-side by deploying a web
application in the server side. The communication tunnel
between the client and the server is not JRMP protocol but
HTTP protocol, so the framework can pass through the
fireworks in the public network [5].

II. PROXY PATTERN AND HTTP TUNNEL
BASED ON JAVA

A. Java Proxy Design Pattern
Design pattern is a convenient way to implement the

software code reuse between different projects and
programmers [6]. For instance, MVC design pattern has
been widely used on the UI program of JDK and web
framework program. The proxy pattern provides a proxy to
control access to the target object. Under normal
circumstances we have direct access to a target object
providing service, and sometimes probably because of the
position or the status of the target object, the target object
cannot be directly accessed. Proxy object hides the
interaction details of the customer and target object, and
control client access to the target object [7-8].

Java dynamic proxy provides a simple-to-use
framework for the realization of proxy design pattern. Java
dynamic proxy mainly involves invoking handler interface
and dynamic proxy class Proxy. The invoking handler is
an interface that a concrete invoking handler class must be
implemented. The declared method invoke of the invoking
handler need be overwritten. The proxy instance is an
instance of a proxy class. Each proxy instance has an

2nd International Conference on Teaching and Computational Science (ICTCS 2014)

© 2014. The authors - Published by Atlantis Press 98

associated invoking handler object. Through which a
proxy interface method call on the proxy instance will be
assigned to the invoke method of the handler instance, the
invoke method of the invoking handler’s implementing
class will be invoked automatically. The invoking handler
object handled method call in an appropriate manner, and
it returns the result of the proxy instance to the client.

B. HTTP Protocol and Java Serialization Object
Transfer

JRMP (Java Remote Method Protocol) is the Java
technology-specific protocol for looking up and
referencing remote objects. It is a wire level protocol
running at the level under Remote Method Invocation
(RMI) and over TCP/IP. Currently java RMI uses JRMP as
communication protocol. To pass through the firewall of
enterprise and reduce the complication of the application
deployment and registry, HTTP protocol is used replacing
JRMP. HTTP (Hypertext Transfer Protocol) is an
application-level protocol for distributed, collaborative,
hypermedia information systems [9]. It is a generic,
stateless, protocol which can be used for many tasks
beyond its use for hypertext, such as name servers and
distributed object management systems, through extension
of its request methods, error codes and headers. Java
servlet is a small Java program that runs within a Web
server. The Servlet interface defines methods to initialize a
servlet, to service requests, and to remove a servlet from
the server. Servlets receive and respond to requests from
Web clients across HTTP. Servlet interface provide a
simple-to-use and effective communication method
between the client-side and the server-side in the java
platform.

Java serialization refers to the persistence of the class
or type of basic data in the data stream, including the file
byte stream, the network data flow. Java class enables its
serialization function by implementing the Serializable
interface. Object Serialization supports the encoding of
objects and the objects reachable from them, into a stream
of bytes. Serialization also supports the complementary
reconstruction of the object graph from a stream [10].
Serialization is used for lightweight persistence and for
communication via sockets. The default encoding of
objects protects private and transient data, and supports the
evolution of the classes. Serialization allows the serialized
data of an object to be specified independently of the fields
of the class and allows those serialized data fields to be
written to and read from the stream using the existing
protocol to ensure compatibility with the default writing
and reading mechanisms. Java ObjectOutputStream
objects and ObjectInputStream objects can write and read
the java serialization objects. The data sending-side writes
the serialized object through invoking the method
writeObject of ObjectOutputStream class, and then the
data receiving-side reads the serialized object by calling
the method readObject of ObjectInputStream class.

III. LIGHTWEIGHT RMI FRAMEWORK BASED ON PROXY
PATTERN AND HTTP TUNNEL

A. Lightweight RMI framework design
To improve the capability of passing through the

enterprise firewall in the public network and reduce the

complexity of deploying RMI service in the server-side,
HTTP protocol is used to replace JRMP protocol as the
communication protocol between the client and the server.
Java client serialize the java object, using HTTP protocol
write the serializable object into the byte stream and spread
it on the Internet through the firewall in the HTTP tunnel,
and submit to the Web Server in the HTTP port. Servlet in
the web container read the serialized object by
deserializing the java object. After completing the business
logic operation, the servlet write the result object into the
byte stream. The client gets the result object by
deserializing the result. Serialized object transfer rules can
be defined on the basis of HTTP protocol.

Figure 1. RMI vs Lightweight RMI

HTTP protocol is a stateless request/response protocol,
and we need to create a new connection for each request.
Java dynamic proxy is used to create a client proxy for the
remote server object. When this method is called each time
the client side proxy object will establish an HTTP
connection between java dynamic proxy of client-side and
the server-side. The result is returned to the client proxy
object after the remote server object executes the relevant
operations. Java dynamic proxy instance plays a role of the
client RMI stubs, and java servlet plays a role of the
service side of the framework. The framework mainly
consists of server-side skeleton, a client stub and HTTP
communication tunnel and remote object, shown in figure
2.

Figure 2. Lightweight RMI framework architecture

1) Remote object: the server-side business logic object
that implements the business logic interface, the client
application will program oriented-interface after the client
proxy instance is created.

2) The service side framework: Java Servlet, after
receiving a call request of the client proxy instance, create
business logic objects and calls the corresponding method,
and if the exception is thrown during the return to the
client agent, the call result will be returned to the client;

Client

Server

Client

Server

HTTP

JRMP

Firewall

 Java RMI

Lightweight RMI

Communication Tunnel (HTTP Protocol)

Client Application Remote Object

 stub(java Proxy) Skeleton
(java Servlet)

99

3) The client stub: the client proxy instance, JDK
dynamic proxy classes Proxy create the instance;

4) HTTP communication tunnel: Client handler is
invoked to establish HTTP connection with server Servlet,
and write java serialized objects connected to the output
stream and read java serialized object from the input
stream, thereby achieving the communication between the
client HTTP proxy instance and server.

B. Communication structure based on HTTP
1) When the client-side proxy instance writes the data

objects, the writing order need predefined to communicate
properly with the server-side. The order of the client-side
writing is defined as follows: ①business interface full
name, ②constructor parameter number of mapping class,
③ constructor parameter objects of mapping class, ④
invoking method name of the interface, ⑤ invoking
method parameter number, ⑥invoking method parameter
objects.

2) When the server-side servlet writes the data objects,
the writing order also need predefined to communicate
with the client. The order of the server-side writing is
defined as follows: ① result flag object, ②result object.

Figure 3. Communication structure based on HTTP

C. RMI framework mechanism
The core of the framework design is to create a handler

interface based on the HTTP protocol communication
through java dynamic proxy class, on the base of which a
proxy instance is created. The mechanism of the
lightweight RMI framework can be described as follows:

1) Establish the connection between the client proxy
instance and server Servlet. HTTP client component of
Aapche open source project is used in the client-side;

2) Client proxy instance will write the interface name,
interface class constructor function, the number of
parameter object , the name of the called method , the
number of parameters and parameter types , parameter
object data to the output stream (see section
Communication structure based on HTTP), waiting for the
server response;

3) Servlet will receive the request input stream of the
client instance and read the input stream according to the
order that the client side wrote the object. The server side
application will dynamically create the instance of the
class implementing the interface according to the
configuration file of the mapping between the interface
name and the implementation class name, depending on
the java reflection mechanism. The server side will return
the result to the client side through the response method.
The result mainly includes method call result flag and the
returned object. If the server program throws the exception,
the exception will be returned to the client. The
communication mechanism from the server side to the

client side is the same with the mechanism from the client
to the server side.

4) The client agent reads the returned result flag. If the
flag is successful, the subsequent returned object can be
read, otherwise the subsequent object is an instance of
exception object, and the client-side should catch the
exception;

Figure 4. Lightweight RMI framework mechanism

D. RMI framework implementation
The client proxy instance based on Java dynamic proxy

Proxy is created, create a class that implements the
invoking handler interface to achieve HTTP connection
with the Servlet server. The object sent to the output
stream is written and then waits for the server response.
The Servlet of the server side receives client HTTP
requests, mainly to resolve the request data stream object,
and call the appropriate method and returns the results. The
static view of the relevant class for the framework can be
stated as follows:

Figure 5. Lightweight RMI framework implementation

1) Define business logic interface BusinessInterface,
where the provided operation method is declared. Client
programming is interface-oriented, which does not concern
for the concrete realization of business methods. Business
objects in the server side must implement the interface
BusinessImpl, that is, business methods declared in the
interface must be implemented in the server-side. This
framework is dynamically loaded server business object
class by reading a configuration file mapping business
logic interface and business object class.

2) Define RMI invocation handler HttpRMIHandler,
which must implement invoke method. When using the
newProxyInstance method of java dynamic proxy class
Proxy to create a client proxy for remote business object
instances, HttpRMIHandler is passed as an argument. So
whenever a client proxy instance call the appropriate
method of the business logic interface, the invoke method

HttpRMIHandler

<<InvocationHandler>>

ObjectStream

ObjectStream
P t

<<BusinessInterface>>
i

BusinessImpl

HttpServletRequest

HttpServletRespons

RMIServlet

<<read>>

<<write>

<<use>>

<<use>>

<<use>>
<<use>>

<<read>>

<<write>

Proxy
Instance

HttpRMI
Handler

Stream RMI
Servlet

Business
Implr

1.invokeM()

2:getStream()

4:flush()

5:getInstance()

 return
6:getStream()

3:writeObject()

7:writeObject() 8:flush()
 return

① ② ③ ④ ⑤ ⑥

① ②

Request structure

Client Response structure Server

100

of HttpRMIHandler class will be dynamically invoked,
and the method will establish HTTP connection with
server RMIServlet. After the HTTP connection is
established, the business logic interface name, the
parameter type of the interface class constructor and the
parameter object, the name of the called method ,
parameter types and parameter objects are written to the
output stream in the defined order, waiting for server
response; If you read the first successful flag object, then
read the subsequent result object. If the first returned
object is failure flag object, then read the subsequent
exception object and deal with it in the client side.

3) Define RMIServlet. When RMIServlet receives the
HTTP request sent by the client proxy, it will first read the
mapping file from the business logic interface to business
logic object, and then in accordance with the client's
written order of the objects, parsing the received objects,
and then dynamically create the business object instance in
the server side. If the server-side operations do not throw
any exception, the result success flag and the result object
will be written to the object stream in turn. If an exception
is thrown in the process operation in the server side, the
failure flag and the exception will be written to object
stream, and then the client side can extract the exception
object and deal with it.

IV. CONCLUSIONS
The lightweight RMI framework is designed with java

proxy pattern. Meanwhile, the lightweight RMI framework
uses HTTP protocol to replace JRMP so that the data
communication between the client and the server can pass
through the firewall of the enterprise and reduce the
complication of the RMI program deployment and registry.
Java object tunnel based on Servlet technology and HTTP

protocol achieves object message communication, so the
lightweight RMI framework can easily be integrated into
the application system. It provides for a simple and
efficient solution to build distributed applications deployed
in the Internet on the java platform. The lightweight RMI
framework is used well in the application system.

REFERENCES
[1] WANG Ye, WANG Chen, ZHANG De-fu. The Comparison

Research on Java RMI and CORBA [J]. Computer Engineering
and Applications , 2001,21: 96-98.

[2] YAO yue-hua, CHEN Yi-dong, LI Hui-fang. Application Research
on the Distributed Object Models of CORBA and RMI [J].
Computer Engineering & Science, 2008, 20(9): 151-153.

[3] LIU Dan, CHENG Xiao, HOU De-lin. A Distributed Architecture
Design Based on RMI [J]. Computer Applications and Software,
2007,9:206-208.

[4] LI Zeng-zhi, LI Gang, HAN Dong, WANG Zhi-wen. Based –java
Distributed Application Developing Mechanism-RMI [J].
Computer Engineering and Applications, 2000, 9: 132-134.

[5] QIANG Liang, LI Bin, HU Ming-zeng. Research of Network
Covert Channel Based on HTTP Protocol. Computer Engineering,
2005, 31(15): 224-225.

[6] JAMES W. COOPER. Java Design Patterns [M]. Boston: Addison-
Wesley Professional,2000.

[7] Partha Kuchana. Software Architecture Design Patterns in Java
[M]. New York: Auerbach Publications, 2004.

[8] LIU Yong-ping, HAO Zhi-feng, TIAN Xiang, Feng Ying-chang.
Electricity Fee Payment System of Bank and Power Supply
Enterprise Network Based on Proxy Design Pattern [J]. Computer
Engineering, 2007,33(8): 259-261.

[9] Dan Connolly. Hypertext Transfer Protocol -- HTTP/1.1 [EB/OL] .
[2014-4-22]. http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[10] Oracle and/or its affiliates. Java Object Serialization [EB/OL].
[2014-4-22].
http://docs.oracle.com/javase/8/docs/technotes/guides/serialization/
index.html.

101

