
The Research and Implementation on Extending Algorithm that High Response
Ratio Tasks Schedule Preferentially on μC/OS-II

Fensu Shi
Beifang University of Nationalities

Yinchuan,China
E-mail:shifensu@163.com

Hua Wang
Beifang University of Nationalities

Yinchuan,China
E-mail:lenmohuoyan@126.com

Abstract—To overcome shortcomings that μC/OS-II ，based on
static priority scheduling policy，may block the tasks in low
priority for a long time，task scheduling policy based on high
response ratio scheduling preferentially is added and
achieved .This scheme divided the task in the system into
significant tasks and secondary tasks. The significant tasks
possess the low priority value statically and the secondary
tasks possess the high priority value dynamically according to
response ratio. It revises TCB and rewrites the function named
OSSched and OSCtxSw .It maintains the hard real-time
characteristic ofμC/OS-II . Task`s scheduling mode is
optimized and application field of μC/OS-II is broadened.

Keywords- μC/OS-II; scheduling policy; High response ratio
scheduling preferentially; OSSched；OSCtxSw

I. INTRODUCTION
μC/OS-II is a tiny and open-source embedded operating

system developed by Jean J. Labross .It is a preemptive and
hard real-time kernel based on static priority. It is compact,
real-time and multitasking support, so it can be easily
transplanted in various singlechips and embedded systems.
uC/OS-II is widely used in industrial control field and it
possess high security and instantaneity.

However, μC/OS-II is a kernel base on static priority.
when the high priority tasks require long service time, they
can make the low priority tasks starve for a long time, which
impacts throughput rate of embedded system seriously. In
the field of monitoring or controlling multiple objects at the
same time, if the high priority tasks occupy the processor for
a long time ,it will lead the equipment not to obtain real-time
outside information in time and even lose the information
needed to be collected in many severe cases. In addition, the
kernel can`t afford a good mechanism to solve the problem
of priority inversion. These defects have greatly restricted
the application of the μC/OS-II .

In some recent years ,many researchers and engineers at
home and abroad have started to research and realize various
scheduling policies on μC/OS-II. All their work strive to
breake through the limitation of application which are
brought by μC/OS-II`s scheduling policy base on static
priority. In literature[3], The author proposes a realized
method --time slice scheduling algorithm onμC/OS- II. This
scheduling policy no longer consider task`s priority,so the
whole tasks use the processor in turn.But , in this case ,
interrupting and switching task`s context frequently is a
giant system burden. Strategy that high response ratio tasks

schedule preferentially is a superior task scheduling
mechanism .It balances short run-time job and
sequence,long run-time job .In this mechanism , every task
has its dynamic priority.The scheduler schedules tasks
according to their dynamic priority.In this paper, in order to
make the task scheduling more efficient and reasonable ,we
research and realize this scheduling algorithm onμC/OS- II.

II. PRINCIPLE ANALYSIS ABOUT TASK SCHEDULING STRATEGY
ON ΜC/OS-II

A. Brief introduction of preemptive scheduling policy
based on static priority
μC/OS-Ⅱ can manage up to 64 tasks . The author

retains the tasks whose priority is 0 ,1 ,2 ,3 ,
OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2 ,
OS_LOWEST_PRIO-1 or OS_LOWEST_PRIO ,so the user
can actually create 56 tasks .Every task is given a static
priority which is constant in task`s life cycle , when created.
The lower the priority value is, the higher its actual priority
will be . The system always make the task which has been
already and has the highest priority run. The work
identifying the highest priority task and deciding which task
to run is finished by scheduler.

B. The analysis on adding the scheduling strategy that the
high response ratio task schedules preferentially
In scheduling strategy that the high response ratio task

schedules preferentially , the response ratio needs to be
calculated before every task scheduling. At last, the task,
possessing the highest response ratio and having been
already, obtains the processor.

If the wait time is Tw, required service time is Ts, and
response ratio is Rsp。There is a following formula.

Ts
TsTwRsp +

=
 (1)

It's easy to know that The higher the response ratio is, the
lower the task`priority value will be.

To maintain the μC/OS-Ⅱ`s hard real-time
characteristic ,we divided the task into two categories. The
first category includes important and real-time tasks. We call
them significant tasks and let them own low priority values
which are statically typed; The other category includes
secondary tasks which do not care too much about the
characteristic of real-time and whose priority values are

2nd International Conference on Teaching and Computational Science (ICTCS 2014)

© 2014. The authors - Published by Atlantis Press 109

dynamically typed and relatively large.When created ,they
acquire referential priority values.Their practical priority
values are based on response ratio.Set up a global variable’
BNDRY_Pri’. When we need to created a significant
task ,we give it a priority value less than BNDRY_Pri and
the secondary tasks greater. According to the task`s
characteristics in the system ,the size of BNDRY_Pri is set
up by embedded system developers when configuring the
kernel.

III. IMPLEMENTATION OF MODIFIED TASK SCHEDULING
STRATEGY ON ΜC/OS-II

A. Modification on relevant data structure
In the original task control block(TCB),we add following

members: priority category, commit time, required service
time, response ratio, starting time , referential priority .
Typedef double RSP_RATIO_TYPE
typedef struct os_tcb {
 ．．．．．．
 int OSPriType;// priority category, dynamic or static
INT 32U OSTSKSubTim;//commit time

 INT 32U OSTSKserTim;//required service time
RSP_RATIO_TYPE OSTSKSPRAT;// response ratio

 INT 32U OSTCBBgnrTim；// starting time
 INT 8U OSTCBORfrnclPrio // referential priority

 ．．．．．．
 ｝

After modifying TCB,some program statements are
needed to be added to initialize new members.

INT8U OSTCBInit (……, INT32U ostsksertim)
｛
 ．．．．．．

 if（prio>BNDRY_Pri）ptcb-> OSPriType=DYNMC;
else if （prio<BNDRY_Pri）Ptcb-> OSPriType=STATIC;
else err= OS_PRIO_INVALID;
Ptcb->OSTSKSubTim=OSTimeGet();
Ptcb->OSTSKserTim=ostsksertim；
Ptcb->OSTSKRSPART=1;
Ptcb-> OSTCBBgnrTim=0;
OSTCBORfrnclPrio=prio;

．．．．．．．
｝

The global variable ‘BNDRY_Pr’, Set up previously,is
the boundary of two kinds of task priority value.The variable
is not used when creating tasks,but changing the secondary
task`s priority value according to response ratio. Before
scheduling task, secondary tasks`s response ratio are
recalculated and the secondary ready task which has highest
response ratio is found .At last, this task`s priority value is
set as BNDRY_Pri.

In this way, the significant tasks occupy low priority
values statically ,which maintainsμC/OS- `sⅡ hard
real-time characteristic. At the same time, The priority
value of secondary task that possesses the highest response
ratio is adjusted to be relatively low in accordance with the
thought that high response ratio tasks schedule

preferentially .

B. Modification on relevant funcation
Redefine the funcation named OSSched and rename it to

OSSched_RSPRT, realize the comprehensive scheduling
policy above.

void OSSched_RSPRT (void)

{
 ……

OS_ENTER_CRITICAL();
INT 32U TimNOW= OSTimeGet ();
for(TMP=OSTCBLis;TMP!=NULL;TMP=TMP->

OSTCBNext){
if(DYNMC ==TCM-> OSPriType)
TMP->OSTSKSPRAT=(TimNOW-TMP->OSTSKSub

Tim+TMP-> OSTSKserTim)/ TMP->OSTSKserTim;
}
Sort(OSTCBList);// sort by response ratio
for（TMP= OSTCBList；TMP!=NULL&& DYNMC

==TMP-> OSPriType；TMP=TMP-> OSTCBNext）
 if(TMP->OSTCBStat== OS_STAT_RDY)
{
TMP->OSTCBPrio=BNDRY_Pri;

//Find the secondary ready task which has highest response
ratio ,set its priority value as BNDRY_Pri,and then make it
ready.
OSRdyGrp|=OSMapTbl[TMP->OSTCBPrio>>BNDRY_Pri
];

OSRdyTbl [TMP->OSTCBPrio >> BNDRY_Pri]
|=OSMapTbl[TMP->OSTCBPrio & 0x07];

break;
}
OSSched();
OS_EXIT_CRITICAL();

}
Many tasks ,which cann`t be completed in consecutive

time due to waiting for resources,being blocked and so
on ,need to be repeatedly switched.So,before switching tasks,
old task`s required service time need to be recalculated and
the new task`s commit time must be reset. After the
switchover is completed ,the task`s starting time should be
recorded.Modify task switching function as follows:

Void OSCtxSw(void)
{
 INT 32U Tim_TEMP;
 Tim_TEMP= OSTimeGet ();
 OSTCBCur->OSTSKserTim=

OSTSKserTim-(Tim_TEMP- OSTCBBgnrTim);
OSTCBCur-> OSTSKSubTim= Tim_TEMP;
OSTCBCur->OSTCBPrio=OSTCBCur->OSTCBORfr

nclPrio;
// The statement in original OSCtxSw funcation.
OSTCBCur-> OSTCBBgnrTim= OSTimeGet ();
}

110

IV. TEST AND VERIFICATION ON MODIFIED TASK
SCHEDULING STRATEGY

In order to verify the algorithm that high response ratio
tasks schedule preferentially on μC/OS-II and improvd
and realized in this paper, use BC45 to compile,link and
debug the modified μC/OS-II on X86 under MS-DOS.
Create five tasks.they are Task1,task2,Task3,Task4,Task5.

Set BNDRY_Pri at 5 and clock rates at 100. The basic
information of the tasks is in the Table 1.

TABLE 1: THE BASIC INFORMATION OF THE TEST TASKS

Task
name

Referential
priority Task descriptions

Task1
4

Collect data every 200ms and each data
collection needs 50ms. Print character ‘A’ on

screen befor and after this task.

Task2

5

Communicate via serial port every 300ms and
each communication needs 50ms. Print

character ‘B’ on screen befor and after this
task.

Task3
6

Store data and each operation needs 1s. Print
character ‘C’ on screen befor and after this

task.

Task4
7

Report data to upper computer and each
operation needs 500ms. Print character ‘D’ on

screen befor and after this task.

Task5
8

Query the amount of sample data which has
been collected and each query needs 100ms.
Print character ‘E’ on screen befor and after

this task.

Run the program, a sequence of characters appear on the
screen:

…AAEBBDAACAABBAAE…BAAB…
As Task1`s priority value is the hightest, Two A are

outputted together.Task2` priority value is second-highest. it
can be interrupted by Task1,so subsequence “BAAB”
appears. The remaining tasks occupy processor in the light
of response ratio size when Task1 and Task2 are idle.Two C

or Two D are absolutely impossibly outputted together.
Thus,it verifies that the task scheduling strategy realized in
this paper is right and feasible.

V. CONCLUSION
μC/OS-II ,a hard real-time kernel, Widely used in

industrial control field,only supports static priority
scheduling policy and can`t take lower-priority tasks into
account all the time.

Aim to remedy this defect, algorithm that high response
ratio tasks schedule preferentially is added and realized in
this paper. A small amount of the kernel code has been
revamped,which make μC/OS-II`s kernel schedule tasks
more reasonably.

ACKNOWLEDGMENT
It is a project supported by National Science Foundation

pre-breeding program(Grant No.2012QZP01) and
School-enterprise cooperation in scientific and technological
breeding project(Grant No.2012XQG2) of Beifang
University of Nationalities.

REFERENCES
[1] Xiaodan Tang. Computer Operating System .Xian : Xian University of

Electronic Science and Technology Press, 2007.
[2] Jean Jlabrosse. MicroC/OS-II, The Real-Time Kerne . Translated by

Beibei Shao.Beijing: Beijing University of Aeronautics and
Astronautics Press，2003。

[3] Siliang Gong, Xiuting Zuo etc. Time slice rotation task scheduling
strategy based on dynamic priority.Modern Electronics Technique，
2012.

[4] Houfa Cheng, ChunjinYang. UC/OS-II ,Improvement on Operating
system kernel. Journal of Communication and Computer,2006.

[5] Decao Mao ,Ximing Hu.Embedded System .Hangzhou:Zhejiang
University Press,2003

111

