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Abstract—The search direction by making use of the matrix 
LU decomposition gradient projection algorithm for nonlinear 
programming is given, the stability of sparse and thealgorithm 
of this method can maintain effective constraintmatrix, the 
algorithm can be applied to large sparsenonlinear optimization 
problem with linear constraints. 

Keywords- lu decomposition, large scale sparse, nonlinear 
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I.  INTRODUCTION 

Consider }|)(min{ Sxxf ∈ ,  

S  is a set defined by }0,|{ ≥== xbAxxS , 

}0,|{ fxSxxS ∈=+ . 

Structuring gradient direction ⊥AP
 in projection 

algorithm is the same as finding the answer of least-squares 
of overdetermined equations cxAT = . Assume A  is Large 
matrix, since  the QR decomposition may not keep the 
sparsity of large-scale,  we cannot use QR decomposition to 
solve it. In order to solve the above problems, we consider 
using the matrix LU decomposition to construct descent 
direction. 

II. BASED ON THE STRUCTURE OF VERTICAL SPACE 

For a matrix nmA × ( )nm f ，assume the rank of A  is 
n ,according to the theory of Gauss elimination[1],exist the 
matrix 1M ， 2M ， nM，L ，subject to  

AMMM n 12L ＝U ＝
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note  

12MMMM nL= , 
so (1) induce  
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The (2) both sides of transposition, obtain 
TT MA  

＝
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Inside nMM ，，， L21 M  are lower triangular matrix,  
so 

TM ＝
T

n MMM )( 12L ＝
T

n
TT MMM L21  

are upper triangular matrix. 
Theorem 1.  
Assume ),,,( 21 mnn uuuU L++= , then  U  is a group 

of base on vertical subspace of A. 
Proof. 
Assume  

TM ＝ ),,,,,( 21 mn uuuu LL , 
so （3）can be changed to 

),,,,,( 21 mn
T uuuuA LL  

＝
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Because the rank of A  is n ,so the matrix  
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From the (n+1)th column is vector 0. 
so                                

1+n
T uA ＝0 

m
T uA ＝0 

U  is a group of base on vertical subspace of A. 
According to Theorem 1, we can obtain the 

corresponding algorithm to solve U , denoted  Algorithm 1. 
Because the effective constraint coefficient matrix of 

large-scale problems often have some sparse structures, we 
can make the constraint matrix become a banded structure by 
adjusting the operative constraint and the order of unknown 
sequence, so using algorithm 1 calculation U , it can not 
only looser the sparsity of the constraint matrix requirements, 
but it can also decrease the storage capacity of new method 
than the usual LU decomposition. 

III. THE GRADIENT PROJECTION ALGORITHM FOR 
NONLINEAR PROGRAMMING 

Considering the nonlinear programming problem 
}|)(min{ Sxxf ∈ , 

S  is a set defined by 
}0,|{ ≥== xbAxxS , 
}0,|{ fxSxxS ∈=+  

Algorithm 2   
Step 1.  Set the initial point +∈ Sx0 , 0=k . 

Step 2.  Using kx  the definition of diagonal matrix 
),,( 1

k
n

k xxdiagX L= ,  
do transform 

xXx 1−= , 
Xcc = , 
AXA =  

Step 3.  Using algorithm 1 to solve u, u satisfy: 

0=uA
T

. 
Step 4.  Solve the gradient projection direction:  

dfbxdfGdf += *  

dfuuc T
p −=  

p
p

c
c

d 1
=  

Step 5.  Iterative: 

dex
k

α+=
+1

,0<α <1, 

11 ++ =
kk xXx . 

Step 6.  If the termination condition is satisfied, then the 
end; otherwise 1: += kk , return step 2. 

IV. EXAMPLE 
Example 1: 
solve the nonlinear programming 

)min( 2
100

2
98

2
4

2
2 xxxx ++++ L  

      s.t. 1.01 =+ +ii xx , 100,,2,1 L=i  

0≥ix , 101,,2,1 L=i  
Obviously, the optimal objective function value of the 

linear programming  is 0, one of it is: 
1.012 =+ix , 50,,2,1,0 L=i , 

0.02 =ix , 50,,2,1 L=i . 
From the initial point of  

05.010110021 ===== xxxx L ,  
after 311 iterations, the optimalvalue of 4.8640e-013. 
Example 2: 
solve the nonlinear programming 

)min( 2
102

2
99

2
6

2
3 xxxx ++++ L  

s.t. 6.021 =++ ++ iii xxx , 
100,,2,1 L=i  

0≥ix , 102,,2,1 L=i  
Obviously, the optimal objective function value of the 

linear programming  is 0, one of it is: 
4.013 =+ix , 2.023 =+ix , 0.033 =+ix ,

33,,2,1 L=i . 
From the initial point of  

2.010110021 ===== xxxx L ,  
after 306 iterations, the optimalvalue of 4.7609e-013. 
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