Improvement of Gradient Projection Algorithm for Nonlinear Programming

Dan Wang
Mathematics teaching and research section
Beijing Institute of Graphic Communication BIGC
Beijing,China
wangdan@bigc.edu.cn

Yong-ming Zhang
Mathematics teaching and research section
Beijing Institute of Graphic Communication
BIGC
Beijing,China
bjzym@bigc.edu.cn

$$
M A=\left(\begin{array}{cccc}
* & * & \cdots & * \tag{2}\\
0 & * & \cdots & * \\
0 & 0 & \ddots & * \\
0 & 0 & \cdots & * \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right)
$$

The (2) both sides of transposition, obtain
$A^{T} M^{T}$

$$
=\left(\begin{array}{ccccccc}
* & 0 & 0 & 0 & 0 & \cdots & 0 \tag{3}\\
* & * & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & \cdots & 0 \\
* & * & * & * & 0 & \cdots & 0
\end{array}\right)
$$

Inside $M_{1}, \mathrm{M}_{2}, \cdots, M_{n}$ are lower triangular matrix, so

$$
M^{T}=\left(M_{n} \cdots M_{2} M_{1}\right)^{T}=M_{1}{ }^{T} M_{2}{ }^{T} \cdots M_{n}{ }^{T}
$$

are upper triangular matrix.
Theorem 1.
Assume $\bar{U}=\left(u_{n+1}, u_{n+2}, \cdots, u_{m}\right)$, then \bar{U} is a group of base on vertical subspace of A.

Proof.
Assume

$$
\begin{gathered}
M^{T}=\left(u_{1}, u_{2}, \cdots, u_{n}, \cdots, u_{m}\right), \\
\text { so (3) can be changed to } \\
A^{T}\left(u_{1}, u_{2}, \cdots, u_{n}, \cdots, u_{m}\right) \\
=\left(\begin{array}{cccccccc}
* & 0 & 0 & 0 & 0 & \cdots & 0 \\
* & * & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & \cdots & 0 \\
* & * & * & * & 0 & \cdots & 0
\end{array}\right)
\end{gathered}
$$

Because the rank of A is n,so the matrix

$$
\left(\begin{array}{ccccccc}
* & 0 & 0 & 0 & 0 & \cdots & 0 \\
* & * & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & 0 & \cdots & 0 \\
* & * & * & * & 0 & \cdots & 0
\end{array}\right)
$$

From the $(\mathrm{n}+1)$ th column is vector 0 . so

$$
\begin{aligned}
& A^{T} u_{n+1}=0 \\
& A^{T} u_{m}=0
\end{aligned}
$$

\bar{U} is a group of base on vertical subspace of A.
According to Theorem 1, we can obtain the corresponding algorithm to solve \bar{U}, denoted Algorithm 1.

Because the effective constraint coefficient matrix of large-scale problems often have some sparse structures, we can make the constraint matrix become a banded structure by adjusting the operative constraint and the order of unknown sequence, so using algorithm 1 calculation \bar{U}, it can not only looser the sparsity of the constraint matrix requirements, but it can also decrease the storage capacity of new method than the usual LU decomposition.

III. The gradient projection algorithm for NONLINEAR PROGRAMMING

Considering the nonlinear programming problem $\min \{f(x) \mid x \in S\}$,
S is a set defined by

$$
\begin{aligned}
& S=\{x \mid A x=b, x \geq 0\}, \\
& S_{+}=\{x \mid x \in S, x \succ 0\}
\end{aligned}
$$

Algorithm 2
Step 1. Set the initial point $x^{0} \in S_{+}, k=0$.
Step 2. Using x^{k} the definition of diagonal matrix $X=\operatorname{diag}\left(x_{1}^{k}, \cdots, x_{n}^{k}\right)$,
do transform

$$
\begin{gathered}
\bar{x}=X^{-1} x, \\
\bar{c}=X C, \\
\bar{A}=A X
\end{gathered}
$$

Step 3. Using algorithm 1 to solve u, u satisfy: $\bar{A}^{T} u=0$.

Step 4. Solve the gradient projection direction:

$$
\begin{gathered}
d f=d f G * \bar{x}+d f b \\
\bar{c}_{p}=-u u^{T} d f \\
\bar{d}=\frac{1}{\left\|\bar{c}_{p}\right\|} \bar{c}_{p}
\end{gathered}
$$

Step 5. Iterative:

$$
\bar{x}^{-k+1}=e+\alpha \bar{d}, 0<\alpha<1,
$$

$$
x^{k+1}=X^{-k+1}
$$

Step 6. If the termination condition is satisfied, then the end; otherwise $k:=k+1$, return step 2 .

IV. EXAMPLE

Example 1:
solve the nonlinear programming

$$
\begin{aligned}
& \min \left(x_{2}^{2}+x_{4}^{2}+\cdots+x_{98}^{2}+x_{100}^{2}\right) \\
& \quad \text { s.t. } x_{i}+x_{i+1}=0.1, i=1,2, \cdots, 100 \\
& x_{i} \geq 0, i=1,2, \cdots, 101
\end{aligned}
$$

Obviously, the optimal objective function value of the linear programming is 0 , one of it is:

$$
\begin{aligned}
x_{2 i+1} & =0.1, i=0,1,2, \cdots, 50 \\
x_{2 i} & =0.0, i=1,2, \cdots, 50 .
\end{aligned}
$$

From the initial point of

$$
x_{1}=x_{2}=\cdots=x_{100}=x_{101}=0.05
$$

after 311 iterations, the optimalvalue of 4.8640e-013.
Example 2:
solve the nonlinear programming

$$
\begin{gathered}
\min \left(x_{3}^{2}+x_{6}^{2}+\cdots+x_{99}^{2}+x_{102}^{2}\right) \\
\text { s.t. } x_{i}+x_{i+1}+x_{i+2}=0.6 \\
i=1,2, \cdots, 100 \\
\quad x_{i} \geq 0, i=1,2, \cdots, 102
\end{gathered}
$$

Obviously, the optimal objective function value of the linear programming is 0 , one of it is:

$$
x_{3 i+1}=0.4 \quad, \quad x_{3 i+2}=0.2 \quad, \quad x_{3 i+3}=0.0
$$ $i=1,2, \cdots, 33$.

From the initial point of

$$
x_{1}=x_{2}=\cdots=x_{100}=x_{101}=0.2
$$

after 306 iterations, the optimalvalue of 4.7609e-013.

Acknowledgment

Wang Dan and Zhang Yong-ming thank the Support of Beijing high school youth talent plan (YETP1471) and Beijing Institute of Graphic Communication key projects (22150114021).

References

[1] Karmarkar N.K.,A new polynomial-time algorithm for linear programming.Combinatorica,4:373-395, 1984.
[2] D.Goldfarb \& Liu, An O(n $\left.{ }^{3} \mathrm{~L}\right)$ Primal Interior Point Algorithm for Convex Quadric Programming. Mathematical Programming, Vol. 49, 325-340, 1991.
[3] CHEN Z \& DENG N Y. Some algorithms for the convex guadratic problem via the ABS approach[J].Optimization Methods and Software. 8(2): 157-170, 1997.
[4] Li Qing-yang, Wang Neng-chao \& Yi Da-yi, Numerical analysis. Huazhong University of science and Technology Press,1999.
[5] Chen Zhi \& Gao Lv-duan, An Algorithm for Solving Large-scale Sparse Group of Linear Equations. JOURNAL OF BEIJING POLYTECHMC UMVERSITY, Vo1.27 Sep.N0.3,2001.

