
Exploration on Cultivating Students’ Abilities Based on Python Teaching Practice

Xinxiu Wen
School of Information Science and Engineering

East China University of Science and Technology
Shanghai, China

wenxinxiu@ecust.edu.cn

Zeping Yang, Zhanquan Wang, Min Zhao
School of Information Science and Engineering

East China University of Science and Technology
Shanghai, China

{yangzeping, zhqwang, zhaomin}@ecust.edu.cn

Abstract—Computer programming courses (C, Java, C++, etc)
intended for non-majors are facing a lot of problems in
cultivating undergraduates’ abilities of computational thinking
and problem solving. Students are frustrated with complex
syntax of these languages and are confused with their practical
applications. In the paper, our exploration on students’
abilities cultivations based on Python teaching practice is
introduced. Lesson plan, teaching method and teaching effect
are presented in detail. We wish our research and practice
could give some hint for the reform of introductory
programming courses.

Keywords-problem solving; Python; task-driven; teaching
method; computational thinking

I. INTRODUCTION
Due to the critical conflict between limited class hours

and complex languages syntax, computer programming
courses (C, Java, C++, etc) intended for non-majors are
facing a lot of problems in most universities all over the
world [1, 2]. In East China University of Science and
Technology (ECUST), most of science and engineering
students take C programming as their first programming
course, which the total class hours are 48 class hours (32
class hours for theoretical study and 16 class hours for
experimental exercise). Having worked on teaching C
programming for ten years, our research group found the
following reasons hinder the improvement of computer
abilities of non-computer major students:

• C language has rich syntax details. Students have to
spend much time on syntax learning and error
correcting, which leads to the absence of confidence.

• Class hour is relatively limited. Teachers are busy
finishing the appointed teaching task, which lead to
the ignoring of application ability training.

• Thinking mode’s cultivation is scarce. Students
couldn’t understand the meaning and function of this
course.

In 2006, Jeannette M. Wing [3] gave the definition of
computational thinking (CT). She said that computational
thinking was a fundamental skill for everyone, not just for
computer scientists. Just like reading, writing, and arithmetic,
computational thinking should be added to every child’s
analytical ability. Computational thinking has attracted much
interest in education field since it was proposed. Many
researchers think that computational thinking should be

combined into curriculum to form a solid foundation for
further skill development [4, 5].

In 1989, Guido von Rossum [6] created Python language.
It has been proved an easy language for beginners and used
in the industry such as Google, Philips, etc [7]. In short,
Python has the following characteristics:

• It is simple and flexible;
• It is free and powerful;
• It is interpreted and object-oriented.
Because it could help students concentrate on the

problem itself rather than syntactic details, we think Python
as a teaching language is more suitable than C to cultivate
students’ abilities of computational thinking and problem
solving.

The remainder of this paper is organized as follows.
Section 2 presents the related work. Section 3 introduces our
lesson plan. Section 4 describes in detail our teaching
method and teaching effect. Conclusions are presented in
Section 5.

II. RELATED WORK
Joseph D. Oldham [8] introduced the advantages of

Python and the disadvantages of Python in teaching basic
programming concepts and constructs. Their students report
showed that Python is easy for a beginning student to
practice on interesting projects. Arnd Backer [9] represented
their experience on course construction of computational
physics by using Python as the programming language. The
course’s main goal was to enable students to solve problems
in physics with the help of numerical computations. The
result illustrated that their preliminary effort which adopted
Python as programming language to teach computational
physics was very successful. Linda Grandell et al [10]
presented a case analysis of using Python to teach
programming in high school students, which emphasized
programming rather than Python. The initial research
indicated that Python could be a suitable language for
novices. Nikolaos Avouris et al [11] reported their
experience of introducing collaborative and project based
methods in the first year course using Python as a
programming language, and discussed the effects of these
methods to students’ attitude and performance.

III. LESSON PLAN
Python programming is an elective computer course for

all undergraduate students in ECUST. The total class hours

2nd International Conference on Teaching and Computational Science (ICTCS 2014)

© 2014. The authors - Published by Atlantis Press 192

are 40, which include 24 theoretical class hours and 16
experimental class hours.

A. The objectives of teaching
The basic tasks of course are to make students master the

basic theory knowledge of Python language and the basic
thought of program design, and the ultimate objectives of
course are to teach and improve the students’ abilities of
analyzing problems, solving problems and computational
thinking.

B. The distribution of total weeks
The course contents and teaching plan are as follows (T

represents theoretical class hours and E represents
experimental class hours). Computational thinking
characteristics are permeated into the case analysis of each
chapter:
1) Introduction to Python (T(2) +E (1))

1.1 Computational thinking and its characteristics
1.2 Evolution of Python
1.3 Characteristics of Python
1.4 Case analysis 1

2) Basic data types (T(2) +E (1))
2.1 Value and type
2.2 Variable assignment
2.3 Type conversion
2.4 Case analysis 2

3) String, list, tuple and dictionary (T(4) +E (2))
3.1 String
3.2 List
3.3Tuple
3.4 Dictionary
3.5 Case analysis 3

4) Condition and loop(T(4) +E (2))
4.1 If statement
4.2 While statement
4.3 For statement
4.4 Break and continue statement
4.5 Case analysis 4

5) File reading and writing(T(2) +E (2))
5.1 File reading
5.2 File writing
5.3 Batch reading and writing
5.4 Case analysis 5

6) Function and parameter(T(2) +E (2))
6.1 Function definition
6.2 Argument passing
6.3 Recursive function
6.4 Case analysis 6

7) Object-oriented design(T(2) +E (2))
7.1 Class definition
7.2 Class inheritance
7.3 Case analysis 7

8) WxPython GUI design(T(2) +E (2))
8.1 Introduction to WxPython
8.2 Form design

8.3 Control design
8.4 Event response
8.5 Case analysis 8

9) Network programming(T(2) +E (1))
9.1 Introduction to network communication
9.2 Client design
9.3 Server design
9.4 Case analysis 9

10) Database Programming (T(2) +E (1))
10.1 Introduction to database
10.2 Database creation
10.3 Database connection
10.4 Case analysis 10

C. Examination grading
A final examination would be arranged in the end of

semester. The examination is in computer test form and
realizes separation of teaching and examination. The
examination would be scored by centesimal system. Final
grade is composed of examination (60%) + experiment (10%)
+ attendance (10%) + homework (20%).

IV. TEACHING METHOD AND EFFECT
Python programming is a practical course which needs

students spend much time on exercise. Computational
thinking has such characteristics as abstraction, automation,
transformation, type-checking, error-correction, prevention,
etc [3]. Having studied CT for years, we think that ability
cultivation of computational thinking should be integrated
into curriculum teaching closely, rather than be taught
boringly.

A. The task-driven teaching method
 In our school, students who select Python programming

course are very interested with program design and are eager
for problem solving. Therefore, we choose the computer lab
as our classroom, which facilitates students’ learning and
programming. Having compared different ways of teaching,
task-driven teaching method is adopted to improve students’
interest and confidence. At the beginning of semester, we
illustrate several interesting or functional teaching examples
to students and list the tasks that they have to finish after
each class. For example, the score management system is
related to students and is easy for them to understand system
demands. The whole system is showed in the first class and
the system function is divided into different modules, which
illustrates the abstraction and decomposition characteristics
of computational thinking. Having finished the chapter 1,
students are asked to print the graph as figure1 to improve
their abilities of simulation. Having studied chapter 2 and
chapter 3, they should have the abilities to store students
information (code, name, math score, computer score, etc)
into lists and calculate total (average, max, etc) score of each
course. During the experiment of chapter 2 and chapter 3,
they learn the characteristics of CT such as type checking
and transformation. Chapter 4 and chapter 5 ask them to
handle lots of student information, save these information
into file (notepad, excel, etc) and take information from these

193

files, which help them master the concept of error correcting
and deadlock. Chapter 6 and chapter 7 require students to use
functions or object-oriented design method to improve
system’s modularity and reusability. Kinds of search
algorithms and sort algorithms could help students
understand recursion and compromise characteristics of CT.
Chapter 8 demands students using WxPython to build user
interface and handle event response (Figure 2). Chapter 9
and Chapter 10 claim students to show data on web page and
store data in the Access database, which involve
characteristics of prevention, protection and recovery.
Students learn computational thinking from the example of
score management system during the semester, which is
practical, acceptable and interesting.

Figure 1. The print interface example

Figure 2. The WxPython example

B. The evaluation of teaching effect
Improving students’ abilities of problem analyzing and

solving are very important when learning a programming
language. In addition to emphasizing the importance of
computational thinking in the first class, we ask students to
design and realize a small project with windows combined
with their interest or majors in every semester. When
students first receive the task at the beginning phase of
semester, most of students think that it is impossible for them
finish the work. However, we insist on saving five minutes
in each class and talking about what questions could be
solved depended on studied knowledge. By this way,
students’ programming abilities of solving small questions
are improved rapidly. At the same time, their self-confidence
is increasing gradually.

Take Python programming course in the 2013-2014
academic year in ECUST as an example, all students

finished their tasks in the end of semester, although there
were some difference among systems’ complexity and
robustness. Every student was asked to give a short
presentation on his (her) project and share his (her) ideas
with classmates, which improved students’ expressive
abilities and thinking abilities. The projects that students
developed include tetris, supermarket management systems
(Figure3), twenty-four point (Figure 4), personal count
management system, etc.

Figure 3. The supermarket management system

Figure 4. The twenty-four point

V. CONCLUSIONS
Fostering interdisciplinary talents with abilities of

computational thinking and professional problem solving are
essential requirements for computer fundamental education
in most universities. Having taught C programming for 10
years in computer center of ECUST and instructed Python
programming for two semesters, we conclude that selecting a
suitable programming language could save much time and
pay more attention on core problems, which is very
important for thinking mode cultivation and application
ability training. The experimental results illustrate that
Python is a suitable tool to achieve our teaching objectives.
Future research aims to explore Python applications in
various majors and help students solve professional problems
in work and study.

ACKNOWLEDGMENT
The authors would like to express their appreciation to

the anonymous referees for their valuable suggestions and
comments. This work was partially supported by the
Shanghai Undergraduate Teaching Reform Project at 2013
under grant No. YH0126121.

194

REFERENCES
[1] J. Holvitie, “Breaking the Programming Language Barrier: Using

Program Visualizations to Transfer Programming Knowledge in One
Programming Language to Another,” 12th IEEE International
Conference on Advanced Learning Technologies, 2012, pp.116 – 120.

[2] D. Krpan, I. Bilobrk, “Introductory Programming Languages in
Higher Education,” MIPRO 2011, May 23-27, Opatija, Croatia, 2011,
pp. 1331-1336.

[3] J. M. Wing, “Computational Thinking,” Communication of the ACM,
2006, 49(3): 33-35.

[4] J. A. Qualls and L. B. Sherrell. “Why computational thinking should
be integrated into the curriculum,” Journal of Computing Sciences in
Colleges, Volume 25 Issue 5, May 2010, pp. 66-71.

[5] J. Lu, G. Fletcher, “Thinking about computational thinking,” 40th
SIGCSE Technical Symposium on Computer Science Education,
2009, 260-264.

[6] G. V. Rossum, “Python Tutorial,” May 1995.
[7] H. Fangohr, “A comparison of C, MATLAB, and Python as teaching

languages in engineering, ” in Computational Science ICCS 2004, ed,
2004, pp. 1210-1217.

[8] J. D. Oldham, “What happens after Python in CS1?,” Consortium for
Computing Sciences in Colleges, Centre College. Danville, KY. 2005.

[9] A.Backer. “Computational Physics Education with Python,”
Computing in Science & Technology. 2007, 9(3): 30-33.

[10] L. Grandell et al, “Why Complicate Things? Introducing
Programming in High School Using Python,” Eighth Australasian
Computing Education Conference (ACE2006). 2006.

[11] N. Avouris et al, “Teaching Introduction to Computing through a
project-based collaborative learning approach,” 14th Panhellenic
Conference on Informatics, 2010.

195

