
Implementation of High-volume Reliable Intelligence
E-business

Zhong Zhou1 Wen Jun2
1 Computer Science & Technology Institute in UESTC, Chengdu 610054, P. R. China
2 Computer Science & Technology Institute in UESTC, Chengdu 610054, P. R. China

Abstract
E-business intelligence and reliability are the crucial
step for companies’ huge volume data processing.
This paper presents a transaction middleware and web
server working together supported by business
intelligence mechanism, which can get a reliable
scaleable plug-in based system. The efficiency of data-
processing will be reduced. It can facilitate both the
developers and consumers.

Keywords: Transaction middleware server, Business
intelligence, Resource recovery Mechanism, Logical
Unit Work

1. Introduction
Recently, we have been witnessing the High-volume
E-Business Processing plays a central role in the daily
operations of most of the world’s largest corporations
for its powerful data processing capability and high
security. Although there are many forms of computing
solutions are used extensively in various business
capacities, the Reliable Intelligence occupies a coveted
place in today’s e-business environment. For example
finance, health care, insurance, public utilities, online-
business, and a multitude of other public and private
enterprises, the Reliable Intelligence continues are
going to form the foundation of modern business. No
doubt, the processing capability of modern computing
system is powerful, but it is hard to say this has
implemented a perfect solution in today’s e-business
environment especially when focusing on Reliable
Intelligence. Some flaws exist in current solutions.

Firstly, the reliability and intelligence are two
different concepts, which means they have their own
requirements, how to merge them into an integrated
solution is much more difficult than we had expected
before. In the e-business environment, transactions
become even more important since, almost by
definition, e-business has to be thought of in terms of
pervasive computing. That is, resources can be spread
across several computers, and many different types of

servers can be succeeded in a single request. It is very
important to have architecture capable of “tying up”
all those related changes and reverting them all if one
of them did not complete successfully. Therefore we
must abstract customers’ requests into transactions.
For example, Mr. A sent the points (100$) in his credit
card to Mr. B’s card, when the transaction happens,
there are two “writing-operation” in the database (1.
subtracting 100$ from Mr. A’s personal account; 2.
Adding (100 $) to Mr. B’s account ;), the two writing-
operation must been considered as one transaction.
The BI (Business Intelligence) web/application is a
process-driven architecture, process is the basic unit in
BI application server. The TM server (Transaction
Middleware server) is a transaction-driven architecture.
Now we can use a special adapter which can transform
the customers’ request into transaction. Now, when a
customer requests come, the BI web/application server
deals the requests with its BI capability and sends
these requests to TM server through the adaptor.

Secondly, it seems to be a good idea when we
only focusing on the security and reliability. However,
if considered from other perspectives, some potential
problems may arise. For example, when a transaction
accesses some resources through TM server usually
costs more than accesses it directly, in addition, this
may have some impact on its efficiency. As we known,
the more secure and more complex, the cost for the
transaction will be more expensive, which may lead to
a dilemma:when we are considering both the cost and
efficiency. Therefore, the high-level reliabilities is
performing at costing the efficiency, how to make a
balance between two of them is a important problem;
However, if we make a more careful analysis on such
problems, we find that not all the transaction needs
most security protect mechanism. For example, Mr.
Black needs a financial transaction such as online
trading, now he wants to buy a notebook PC, the
commercial system will do two things during the
transaction that is change both the Mr. Black’ credit
card points and the amount of notebook. The two
operations relate to database and indeed make a
“write-operation”, no doubt, this need the transaction
to guarantee the reliability. If Mr. Black just wants to

browse his account this moment, there are only some
“read-operations” on database, this won’t change the
values in database and result in the no-consistence
phenomenon, the high-level middleware protecting
mechanism is not necessary, only a simple security
can satisfy the requirement, at last can lower the
developing cost and enhance the system processing
efficiency. What’s more, if we can separate the
mainframe applications logic from web server
applications, which means the mainframe applications
concentrate on data processing, on the other hand the
web server application only focus on business logical
and parse the request (Analyzer—request arbitrator)
decide which transaction need high-level protecting
mechanism (through transaction middleware) which
transaction only need normal-level security (such as
JDBC).

 The last problem considered is how to make the
system with the capabilities of extendable and
updatable intelligence. Because BI web/application
server and TM server are designed in components-
based, plug-in supported deployment style. Some
important components such as decision-maker or
transaction Task schemer must be changeable and
extendable. Therefore, the popularization of Reliable
Intelligence in today’s e-business environment needs a
new solution.

This paper presents a detailed solution of a new
Reliable Intelligence Architecture and can solve or
lower the negative impacts which are mentioned above
in this section. This will facilitate both the developers
and consumers. In addition, we also can change the
configuration (transaction scheme or the protected
level) of the transaction middleware so that it can
satisfy more changeable requirements easily. On the
other hand, the Business intelligence is merged into a
scalable, components-based application server, with
the MVC (Module View Controller) designed pattern,
we can effectively separate the business-logic from the
presentation-logic, which guarantee better components
organizing and code reusing. At last gives a demo
experiment and makes a conclusion. The rest of this
paper is organized as follows. Section 2 to Section 4
describes the most important module in our system.
Section 5 presents an experiment to demonstrate our
design. The related works and the paper conclusion are
discussed in Section 6.

2. Intelligence implement: business
intelligence (BI)

In order to implement a high-reliable and intelligence,
we use a “process-driven” application environment. In

this environment, all the business applications execute
transactions supporting business processes, performing
activities such as receiving customer orders, managing
inventory, shipping products, and billing customers.
Transaction data and/or events are captured and
integrated in a data warehouse environment for
reporting and analysis by “actionable BI applications”
in Fig 1; How to deal with data warehouse data into
useful and actionable business information is depicted
in Fig 2.

Fig 1: BI merged into web servers.

Fig 2: Tracing mechanism for useful and actionable business
information.

NOTE: Here is just the simple inventory analysis
flow. In fact, the intelligence analyzing algorithm for
inventory or payment needs further discussion, now is
just considered as a special component in our system.

The BI application interface in our intelligence
system supports the “Plug-in mechanism”. In this
environment, the actionable BI applications can be
seen as changeable and renewable components in our
system. The interfaces for the three monitors dealing
with sales, order cycle and payment are designed in a

standard regulation, they can be updated or modified
as we want. The actionable BI decision-making logic
can be generated in many ways, for example we can
use business expertise and guided analysis to evaluate
the actionable business information produced by BI
systems to determine what decisions, if any, need to be
made to optimize business operations and performance.
Applying business expertise to business information
creates business knowledge. This knowledge can then
be fed back to the business processes that created the
transaction data and business information being
analyzed, and the business processes enhanced as
appropriate. In some situations this feedback loop can
be automated.

3. Resource recovery mechanism
(RRM)

RRM is the security mechanism in our transaction
middleware, which works as a coordinator to help
transaction to achieve the commit or rollback of all the
components, to guarantee the ACID (Atomicity,
Consistency, Isolation, and Durability) properties, it is
based on the two-phase commit protocol:

(1). When a transaction controller arrives at the
end, it uses RRM to issue “prepare” to commit
statement to the other transaction managers or data
managers. They then do whatever is necessary to
ensure that they can either make the changes
permanent or roll them back. When this is done, they
acknowledge the “prepare” to commit statement either
positively or negatively. RRM collects all the “votes”.

(2). If all the votes are positive, RRM asks all the
resource managers to commit their changes. If any of
the votes are negative, RRM asks all resource
managers to roll back. At this point, RRM forgets
about that “prepare” state and it is up to each resource
manager to complete the commit or roll-back for their
part.

4. Reliable implement: transaction
middleware (TM)

First, we should realize that each user's interaction
with a business information system involves one or
more operations dealing with the data residing in
database, here we must abstract all operations into
transactions, For example, a customer sends a set of
updating requests to TM, the updating operations will
be seen as a atomic operations and encapsulated in a
uniform mechanism shown in Fig 3. This means each
transaction is a set of sub operations that must be

executed as a unit (although each operation can run in
a different process respectively). In TM, a group of
related operations is called LUW (a logical unit of
work). All the LUWs processed in TM ensure the
integrity and consistency of business information
systems by providing the ACID properties.

A transaction can comprise one or more LUWs, as
shown in Fig 4. When an LUW completes successfully,
it issues a “synchronization point” (also called a
“syncpoint”), which marks the end of the LUW. This
commits any data changes made in the LUW and
releases the data for use by other transactions. If a task
fails, any uncommitted changes are backed out
automatically. This restores recoverable resources to
the consistent state they were in at the beginning of the
interrupted LUW (that is, at the most recent syncpoint
or the start of the task). This reversal process, called
“dynamic transaction backout”, occurs within the
same task to safeguard other tasks from any chance of
using corrupted data.

Fig 3: A transaction.

Fig 4: A transaction comprises LUWs.

When customers’ requests are generated from
applications, they will be considered as transactions
and sent to TM server, then these transactions will be
processed in a special order, the following numbered
steps correspond to the numbers in Fig 5.

Fig 5: Transaction processing in TM server.

(1). The TM server receives a request from a user
application. The TM server must first verify that it can
communicate with the user's device and that the user is
authorized to use the system. If the user has been
verified, his request will be encapsulated into a
transaction, the attributes (such as Task ID, privilege,
resource require and which atomic operation is needed
on database) for this transaction will be save in to the
“Transaction definition table”.

(2). The TM server scans the table of transaction
definitions for information about the transaction.
(Before a transaction can be used, it must be defined
with attributes such as the name of the first program to
be run when the transaction is requested.)

(3). If a transaction has been selected, the TM
server assigns the request to a “task” that it uses to
control the processing of the transaction's programs.
The region schedules the task to be processed with
other tasks and allocates processing time and access to
the required data.

(4). The task runs the transaction's first program
on a process called an “application server”. If the
transaction is implemented by several programs, those
programs can run on the same or separate processes,
depending on how the programs are invoked.

(5). The TM server monitors the progress of the
task, serving its requests for data communications and
other resources. It also performs background
operations needed to ensure that the task continues to
run optimally without conflicting with other tasks and
with the data integrity required.

(6). When the task completes, the TM server
commits any data changes, terminates the task, and
frees resources for use by other transactions. If the task
fails, the attributes and information for this task will
not be deleted from the “Transaction definition table”,
and the “retry” will be processed when the required
resources are available.

5. Experiment
This section will give a demo experiment based on the
Implementation mentioned above.

5.1. Demo experiment instruction
Suppose there is an online-bank-service System. Now,
Mr. Black wants to use his credit card to order many
Notebook PCs and some other fittings (like mouse,
modem) from X market. A few months earlier, Mr.
Black has done the similar purchases 3 times, and then
the history transaction information has been stored and
processed in data warehouse by the BI components.
When he login his account, the online BI components
will realize the current customer is Mr. Black, and
supply some services which is related to Notebook
PCs ordering view because often ordering Notebook
PC before. When the transaction between Mr. Black
and the X market has finished, the points in Mr.
Black’s credit card will be move to the X market’s
financial account, the cash in both Mr. Black and X
market’s account will be changed at the same moment,
this will be represented in the database of Bank.

Note: We suppose that both the personal account
and X market account are served by same web server
and TM server, the service of which also includes X
market’s financial and storage information;

5.2. Technical analysis
The Experiment contains both the “read-operation”
and “write-operation” to the database of the Bank,
now we make a further analysis about this demo
experiment project.

Note: the analysis is based on the balance
between the requirements and cost.

Transaction: Mr. Black orders some notebook
PCs and other fittings (like mouse, modem) from X
market.

The transaction is a typical online-trade business,
customers can use online-listings to buy merchandise
from X market. Now customers face a commerce net
site, for this situation the dynamic web page is

necessary, because the dynamic web server page can
contain some graphics and multimedia information to
convenient the customers. With the help of the web
page composed in and BI components, the advisable
advertisements and utilities suiting to customer’
requirements can be easily implemented. No doubt
this can better attract customers for online-trading.
Now, suppose the customer is Mr. Black, he wants to
order many notebook PCs, besides the BI module
processing on data warehouse, the commercial system
will do two things during the online purchase that is
change both the Mr. Black’ credit card points and the
amount of notebook. The two operations relate to
database and indeed make a “write-operation”, no
doubt, this need to be combined into a transaction and
use the TM server to guarantee the reliability, when he
browses sale information and advertisements on the
other hand, only “read-operation” on database happens,
this won’t result in inconsistent information happening.

Therefore, we classify two different way to access
to the transaction service here:

(1). “write-operation”: During the transaction, Mr.
Black account, X market’s account and X market’s
storage information is served;

(2). “read-operation”: During the transaction, Mr.
Black uses web browser to seek information from the
commerce net site offered by X market;

The graphics and multimedia information such as
advertisement will be stored in our BI application/web
server with no relations to TM server. The more
important, an “Analyzer (request arbitrator)” exists in
the server, which can recognize which request is
“write-operation” and which one is “read-operation”.
The “Analyzer” can also be considered as a BI
application component with a standard interface,
support for plug-in mechanism.

5.3. Implement the experiment
In order to obtain the high-volume processing
capability, customers’ transactions are processed in
IBM mainframe, firstly there are some related
introductions. The integrated system architecture is
depicted in Fig 6.

(1).TM server: “IBM CICSs (Customer
Information Control System) server V3.1”, which can
run on IBM Z-series mainframe and offer some
system API. In CICS, we can define transaction type,
and coding the business processing logic.

(2).Web server: “Websphere Application server
V5.1, which supports plug-in”, CICS ECI adapter.

(3).Adapter: “ECI resource adapter”, which is
the connector, can change the process to transaction.

Deployment as below:
• Importing the resource adapter and setting up

the server
To use the generated stateless session bean

(deploy code) or the generated deploy code with a
SOAP proxy, we must create and setup the server
configuration so that we can connect to the CICS ECI
resource adapter.
• Creating a CICS ECI service

When Application server has been configured, we
need to create a CICS ECI service project on the
server, such as Generate the enterprise service for the
CICS program, import message definitions from the
source program, generate deploy code for the
enterprise service, bind the connection factory to the
session bean, and finally generate the Server proxy
and calling interface for the Servlet.
• Coding the Servlet and JSP and Application

In the Application-Server, containing most of the
business logic module, this is Controller in MVC
design pattern. The “BI”, “Analyzer” detailed above is
also included.

Fig 6: Integrated system architecture.

CICS Application’s
interface

CICS Proxy calling interface

LINKAGE SECTION.
01 DFHCOMMAREA.
 10 GR-GN PIC X
(10).
 10 GR-GMID PIC X
(10).
 10 GR-GMNAME PIC X
(10).
 10 GR-GMPRICE PIC
S9 (10).
 10 GR-GMREMAIN PIC
S9 (10).
10 GR-ERR-MSG PIC X
(64).

public Purchaseinfo()
{
addElement("gr__gn",
java.lang.String.class);
addElement("gr__gmid",
java.lang.String.class);
addElement ("gr__gmname",
java.lang.String.class);
addElement("gr__gmprice",
java.lang.Math.class);
addElement("gr__gmremain",
java.lang.Math.class);
addElement("gr__err__msg",
java.lang.String.class); }

Table1:The ECI Interface between CICSProxy and JavaBean.

In Class Puichaseinfo, besides the attributes of the

object, there are setter() and getter() methods are
available, when a customer request has been sent to
our system and been detect, we can use setter method
to specify all the members’ value in the class or use
getter method to get information. Finally, we call the
special method which is encapsulated in CICS Proxy
to invoke the application in CICS server.

Purchaseinfo handler = new Purchaseinfo ();
handler.setGr__gmid(xxxx); ……..
handler.setGr__gmname(xxxx);
handler.setGr__gmprice(xxxx);
handler.setGr__gmremain(xxxx);
handler.setGr__gmtransid(xxxx);
……//set the value
……//
StationInfoCICSProxy
proxy = new StationInfoCICSProxy ();
handler_result = proxy.doPurchase(handler);
//Through CICS ECI to invoke CICS transaction.

6. Conclusions and future work
In this paper, we have discussed a new solution for
High-volume Reliable Intelligence in modern E-
Business, and introduced the security protecting
mechanism design and implement. Then make a
further analysis which is based on the business
intelligence and balance between the requirements and
cost, finally, give a demo experiment. The demo
experiment can work regularly. However, there is a lot
need to be improved, such as the requirement analyzer
and BI components, this may related to Artificial
Intelligence. In fact, the modem e-business is far more
complex than our experiment. The optimization about
the balance between the requirements and cost, the
determination about which level of protecting
mechanism should been used, and how to parse the
request data package is more effective should be make
a further discussion.

Acknowledgement
The project is supported by the IBM Technology
Center of UESRC. We would like to thank Mr.
Renuka Chekkala and Josef Klitsch for helping me in
CICS debugging server and using the Websphere
Application Server instead of other more complex and
difficult method. The IBM Technology Center of
UESTC for provides us with experiment environment,
Mr. Liudi and Xuyi for help configuring and tuning
DB2 CICS in mainframe.

References
[1] H.E. Huet, F. Vrije, Caromel and D. Bal, A High

Performance Java Middleware with a Real
Application. Supercomputing Proceedings of the
ACM/IEEE SC2004 Conference, 2004.

[2] L. Bettini, R.D. Nicola, A Java Middleware for
Guaranteeing Privacy of Distributed Tuple
Spaces. Lecture Notes In Computer Science,
2604, 2003.

[3] M. Karlsson, K.E. Moore, E. Hagersten and
David A. Wood, Memory System Behavior of
Java-Based Middleware. Proceedings of the 9th
International Symposium on High-Performance
Computer Architecture, pp. 217, Washington,
DC, USA , 2003.

[4] N. Williams, R. Herman, L.A. Lopez. M. Ebbers,
Connecting the CICS to the Services Bus.
Implementing CICS Web Services IBM RedBooks,
12: 150 - 170, 2006.

[5] N. Williams, R. Herman, Creating an enterprise
service for a CICS with CICS ECI Adapter. IBM
Websphere manual, 2005.

[6] C. Rayns, T. Delmenico Design the secure CICS
SOA solution. Security and CICS SOA access,
12: 139-174, 2006.

[7] P. Havercan, T. Delmenico, Design the web
support in CICS. Security and CICS SOA access
12: 175-255, 2006.

[8] C. Rayns, A. Bertoletti, L.Boyle, Distribute
CICS Solutions. The Next Generation of
Distributed CICS , 9: 41-171, 2006.

[9] M. Keen, C. Backhouse, J. Hollingsworth and S.
Hurst. M. Pocock, CICS Web Decision making
technologies. Architecting Access to CICS within
an SOA, 10: 59-97, 2006.

[10] M. Keen, C. Backhouse, J. Hollingsworth and S.
Hurst. M. Pocock. CICS access technologies.
Architecting Access to CICS within an SOA page
10: 97-125, 2006.

[11] R. Credle, J. Adams, K. Clark and H. Jeter, et.al.,
Websphere Enterprise Service Bus. SOA Design
using WebSphere Message Broker and
WebSphere ESB,1: 97-120, 2007.

[12] F. Kon, F. J. Ballesteros, M. D. Mickunas and K.
Nahrstedt, 2K: A Distributed Operating System
for Dynamic Heterogeneous Environments. In
9th IEEE Int. Symposium on High Performance
Distributed Computing. Pittsburgh USA, 2000.

