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Abstract 
Machine learning methods are promising tools for 
transient stability assessment (TSA) of power system. 
Support vector machine (SVM) is used to assess the 
transient stability of power system after faults occur 
on transmission lines. Single machine attributes is 
studied as inputs of the SVM classifier. Experimental 
results in IEEE 50-generator test system shows that, 
attributes of single machine with small inertia 
coefficient are effective in TSA, and the SVM 
classifier with RBF kernel using these single machine 
attributes can achieve satisfying classification 
accuracy. 
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1. Introduction 
Electric power systems are large-scale non-linear 
systems where there are many kinds of stability 
problems. One of them is transient stability, which is 
defined as the ability of a power system to maintain 
synchronism after severe disturbances. The purpose of 
transient stability assessment (TSA) is to determine if 
the contingency may cause power system into angle 
instability, that is, to predict whether the power system 
could maintain synchronous operation of generators 
when subjected to large disturbances such as faults, 
load loss, capacity loss, etc.  

One of conventional methods used for TSA is the 
time-domain numerical simulation. This method 
consists of simulating during and post-fault behaviors 
of the system for a given disturbance, observing its 
electromechanical angular swings during a few 
seconds. It is usually used to estimate stability status 
and to provide detailed operation information of the 
faulted systems as a benchmark. However, the 
simulation method is infeasible for on-line TSA 
mainly due to its time-consuming computation. 

Direct method is another conventional approach 
used in TSA, which replaces the numerical integration 
of the post-fault system equations by a stability 

criterion [1]. Although it is attractive for TSA, it has 
always given conservative results since its deficiency. 

Due to the limitations of time-domain and direct 
methods, there have been great interests in applying 
machine learning methods, which are promising for 
on-line application. [2] summarized experiences in 
applying artificial neural network (ANN) to TSA. 
ANN requires long-time training process and the 
selection of the number of neurons in hidden layer is 
usually determined by a trial. Decision tree has been 
studied to be used in TSA [3], [4]. These methods 
provide mapping between the system variables and 
status with the aid of time-domain simulations. 

With support vector machine (SVM) introduced 
by Vapnik and his co-worker [5], many TSA 
applications based on SVM have come forth [7], [8]. 
[7] discussed the SVC with polynomial kernel using 
224 input variables. A ν -SVM with thirteen features 
is applied in TSA [8]. 

A SVM using single machine attributes is 
proposed in this paper. Case study using IEEE 50-
generator test system was presented to illustrate the 
proposed method. The paper is organized as follows. 
Section 2 provides a simple review of TSA and a set 
of single machine attributes. We demonstrate the 
techniques in Section 3. In Section 4 we present an 
experimental comparison among ANN, Decision tree 
and SVM, since the first two are always used in TSA 
[9]. In Section 5 we discuss the results. Finally, the 
conclusion of our research is in Section 6. 

2. Single machine attributes 
As a benchmark of TSA, time-domain simulation is 
given as follows. For a given disturbance, the 
simulation program alternately solves the nonlinear 
equations representing the dynamics of generators, and 
algebraic power-flow equations representing the 
network. For illustration, consider a multi-machine 
system. The motion of the ith generator is described as 
follows: 
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where  
iδ = rotor angle of  the ith generator; 
iω = the speed of the ith generator; 
nω = the synchronous speed of the ith generator; 

iM = inertia coefficient of the ith generator; 
miP = mechanical power input of the ith generator 
eiP = electric power output of the ith generator. 

For example, in IEEE 50-generator system, after a 
few seconds simulation, power angles vs. time are 
shown as Fig.1 (stable) and Fig.2 (unstable) for two 
different disturbances.  

 

 

 

Fig. 2: Time-domain simulation results for unstable state. 
 
It is difficult to decide attributes as inputs of the 

machine learning. Generally, the post-fault variables 
of generator rotors are first choices for TSA. Inputs 
comprising variables of all the generators make large 
input dimension because power systems are very large. 
Some researchers propose attributes independent of 
the size of power system[10]. 

In this paper, we try to use single machine 
attributes as inputs. Seven variables of a generator are 
chosen, such as machine angle, machine speed, 
machine terminal voltage, electrical active output 
power, electrical reactive output power, the derivatives 
of machine angle and speed to time. 

 Twenty-eight attributes, which were the above 
variables in four different moments, composed the 
input space. One moment was during the fault, others 
were after the fault. 

3.  Support vector machine 
classifier 

3.1. Introduction to SVM 
SVM is based on theoretical results from the statistical 
learning theory.  It is a new and promising technique 
for data classification and regression. In this section, 
we briefly introduce support vector machine classifier  
which can be used for TSA. 

Given training data set ( , )i iyx , 1, ...,i l=  where 
n

i R∈x  and { 1,1}
i

y ∈ − , the aim of SVM classifier is to 
separate two kinds of data in high feature space by 
constructing an optimal hyperplane. SVM classifier 
solves following prime problem: 
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where w  is weight vector of  the hyperplane, 
0C >  is penalty parameter proportional to the amount 

of constraint violation, ξ is slack variable, ( )φ ⋅  is a 
mapping from input space to feature space, and b is 
threshold . 

The dual of (2) is  
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 where α is a vector of l  variables, e  is the vector of 
all ones. 

The most frequently used kernel functions are as 
follows. 

Linear kernel: 
 
 
Polynomial kernel: 
 
 

Fig. 1: Time-domain simulation results for stable state. 
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Radial basis function kernel: 
 
 
Here, γ  and r are kernel parameters. 

3.2. Model selection in SVM 
classifier 

Upon the data set prepared using time-domain 
simulation, SVM classifier model was built for TSA. 
When training an SVM classifier model, there are 
some parameters to tune. They would influence the 
performance of the SVM classifier model. kernel 
parameters and cost of error C should be decided 
before SVM classifier training. The process to search 
optimal values of these parameters is  model selection.  

In our experiments, we considered the radial basis 
function (RBF) kernel. Note that γ is a tunable 
parameter associated with the RBF function. Thus, 
γ and C are two parameters needed searched in model 
selection process[11]. To do this, we divided the 
training data into two sets. One of them was used to 
train a model while the other, called the validation set, 
was used to evaluate the model. We used grid search 
technique to find the optimal values. The search result 
is shown in Fig.3. 
 

 
We built the SVM classifier model using the 

proper C and γ  .  SMO was used to train the SVC 
model. When the training process finished, the SVM 
classifier’s performance was assessed by test set. 

For comparison[12], two classifiers based on 
ANN and Decision tree were trained using the same 
training set. The ANN used in this study is the MLP 
type. It consisted of three layers. The learning rule was 
Momentum, which provided the gradient with some 
inertia, while the amount of inertia was dictated by the 
momentum parameter. Decision tree was generated by 
C4.5. The confidence factor used for pruning was set 

as 0.25, and the minimum number of instances per leaf 
was two. 

4. Case study  

4.1. Test system 
IEEE 50-generator test system [13] was used to test 
the validity of the proposed method, with some 
generator was modified. There are seven generators 
(Generator 1 to 6, 23) based on model including 
subtransient effect and 43 generators based on 
classical model. A large amount of transient stability 
simulations were carried out to obtain training and test 
sets. Three-phase short-circuit faults were created at 
instance 0.1s and cleared at 0.2s and 0.25s. 

Under 90%, 100%, 110% and 120% of the basic 
load conditions, there were 1812 examples created for 
every generator. The attribute vectors were acquired 
from those examples. These vectors were 
characterized as stable and unstable. 

4.2. Result  
To every generator, 1196 examples were assigned as 
training set, and 616 ones comprised test set. Using 
grid search technique, the kernel parameter γ and the 
tradeoff parameter C of every classifiers were 
optimized by grid search. The correct classification 
rate using every generator attributes is shown in Fig.4, 
where H is inertia coefficient of generator. The range 
of H is from 0.7668 to 2210 s.  
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Fig. 3: Grid search for proper parameters. 

Fig. 4: Correct classification rates of classifiers using 
single generator attributes as inputs. 



 
As to the seven generators, the performances of 

their attributes as SVM classifier inputs are shown in 
Table 1. 
 

Generator 
number 

Inertia 
coefficient 

(s) 

 
(C  , γ ) 

 

Correct 
rate 
(%) 

1 6.47 (131072,  8) 93.99 
2 3.14 (256, 16) 94.32 
3 4.43 (131072, 1) 94.00 
4 4.43 (512, 2) 93.84 
5 6.47 (32768, 2) 93.35 
6 3.14 (256, 16) 92.05 

23 3.53 (8192, 32) 91.41 
Table 1: Performances of seven generators’ attributes as 

SVM classifier inputs. 
 

For comparison with traditional classifiers, we 
chose Generator 1’s attributes as inputs. After training, 
models of three classifications were checked in test set. 
The performances are shown in Table 2. All the 
computations presented in this paper were performed 
on Intel Celeron, 1.50 GHz, PC. 

 
Machine 
learning 

classifiers 

Training 
time 
(s) 

Correct 
rate 
(%) 

Kappa 
statistic

MLP 100.76 91.07 0.77 
Tree 0.40 92.53 0.82 

RBF-SVM 3.15 93.99 0.85 
Table 2:  Performances of three classifiers on test set. 

 

5. Discussion  
In the transient stability assessment using machine 
learning method, the key step is the selection of 
system variables. In power system simulation, 
generators with detailed model provide sufficient 
information in power system stability and control. We 
chose single machine variables as inputs rather than all 
machines or abstract attributes. The single machine 
attributes we proposed can effectively predict the 
system state in transient stability assessment. The 
attributes of generators with smaller inertia coefficient 
can give satisfying results. As shown in Fig.4, correct 
classification rates decrease with inertia coefficient 
increasing. 

Model selection is another key problem in SVM. 
Kernel parameters and C should be proper. Otherwise, 
the classifier showed poor performance. We used 
simple grid search to find optimal parameters. The 

reason is that exhaustive parameter search could find 
optimal values. In our experiment, we used other 
search techniques, but the result was unsatisfying. 

There are some suggestions for improvement in 
our study. The first is using proper feature selection to 
increase the correct classification rate and computing 
speed. Another is using other kernel function to 
improve the performance of SVM classifier. 

6. Conclusions 
We have presented single machine attributes as inputs 
of SVM classifier in assessing transient stability of 
power system. Extensive testing was performed on the 
IEEE 50-generator test system under various loading 
conditions. The attributes of machines with smaller 
inertia coefficients showed better performance. Based 
on the theory of statistical learning, SVM classifier 
shows better performance than traditional methods in 
TSA.  
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