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Abstract 
Marriage in Honey Bees Optimization (MBO) is a 
new swarm-intelligence method, but it has the 
shortcomings of low speed and complex computation 
process. By changing the structure of MBO and 
utilizing the Nelder-Mead method to perform the local 
characteristic, we propose a new optimization 
algorithm. The global convergence characteristic of 
the proposed algorithm is proved by using the Markov 
Chain theory. And then some simulations are done on 
Traveling Salesman Problem (TSP) and several public 
evaluation functions. Comparing the proposed 
algorithm with MBO and Genetic Algorithm, 
simulation results show that the proposed algorithm 
has better convergence performance. 

Keywords: Marriage in honey bees optimization 
(MBO), Nelder-Mead Method, Markov chain, Nelder-
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1. Introduction 
Swarm intelligence is a new research area. It studies 
the behavior of social insects and uses their models to 
solve problems. Recently, Based on the marriage 
process of honey bees, the new technique of Marriage 
in Honey Bees Optimization (MBO) was proposed by 
Jason Teo and Hussein A. Abbass[1]-[2] and has been 
updated by Jason Teo, Hussein A. Abbass [3] and 
Omid Bozorg Haddad et al [4]-[5]. 

The objective of this paper is to increase the 
performance of MBO. By combining Nelder-Mead 
method, an improved algorithm is proposed and its 
convergence is analyzed based on the theory of 
Markov Chain. 

The paper is organized as follows. As the basis of 
the study, Marriage in Honey Bees Optimization 
(MBO) algorithm and Markov Chain with some basic 
theorems and definitions are reviewed respectively in 

Section 2, Section 3. In Section 4 and Section 5, the 
proposed algorithm and its convergence analysis are 
presented. Finally, some simulations are done and 
conclusion is given. 

2. Algorithm of marriage in honey 
bees optimization 

The behavior of honey-bees shows many features like 
cooperation and communication, so honey-bees have 
aroused great interests in modeling intelligent 
behavior these years.  

Marriage in Honey Bees Optimization (MBO) is a 
kind of swarm-intelligence method. And such swarm-
intelligence has some successful applications. Ant 
colony is an example and the search algorithm is 
inspired by its behavior. Mating behavior of honey-
bees is also considered as a typical swarm-based 
optimization approach. The behavior of Honey-bees is 
related to the product of their genetic potentiality, 
ecological and physiological environments, the social 
conditions of the colony, and various prior and 
ongoing interactions among these three [1]-[2].  

The five main processes of MBO are: (a) the 
mating-flight of the queen bees with drones encounter 
at some probabilistically. (b) creating new broods by 
the queen bees, (c) improving the broods’ fitness by 
workers, (d) updating the workers’ fitness, and (e) 
replacing the least fittest queen(s) with the fittest 
brood(s).  

3. Markov chain 
Markov chain has been widely applied to GA. Markov 
chains (MCs) have been used extensively to study 
convergence characteristic. Such as many GA 
methods’ performance were analyzed by modeling the 
GA process as a Markov process. 

A Markov chain is a sequence of random values 
whose probability at a time interval depends upon the 
value of the number at the previous time. The 
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probabilities of a Markov chain are usually entered 
into a transition matrix indicating which state or 
symbol follows which other state or symbol. 

Definition 1[6]: A square matrix is ij n n
A a

×
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(a)  if  , 1, : 0, A is positive ( 0);

(b)  if  , 1, : 0, A is nonnegative ( 0);

(c)  if   0 and  : 0, A is primitive; 

(d)  if   0 and  {1, }: 1, A is stochastic.
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Definition 2[6]: If the state space S  is finite 
( S n= ), and the transition probability ( )ijp t are 
independent from t ,  

( ) ( ), , , , ij iji j S u v p u p v∃ ∈ ∃ ∈Ν =  (2) 
the Markov chain is said to be finite and homogeneous. 

( )ijp t is the probability of transitioning from state 

i S∈  to state j S∈  at step t . 
Theorem 1[6]: For a homogeneous finite Markov 

chain, with the transition matrix ( )ijP p= , If  

: 0mm P∃ ∈Ν >  (3) 
then this Markov chain is ergodic and with finite 

distribution. ( )lim , ,ij j
t

p t p i j S
→∞

= ∈ is the steady 

distribution of the homogeneous finite Markov Chain.  
Theorem 2[6] (The basic limit theorem of Markov 

chain): If P is a primitive homogeneous Markov 
chain’s transition matrix, then  
(a)  ! 0: , :a probability vector.
(b)  (  is the start state and it's probability vector is ): 

     lim

(c)  From  lim , we can get a limit probability matrix , 
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Theorem 3[6]: Let P be a reducible stochastic 
matrix, where :C m m×  is a primitive stochastic 
matrix and 0, 0R T≠ ≠ . Then  
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is a stable stochastic matrix.  

4. Nelder-Mead method- marriage 
in honey bees optimization (NM-
MBO) 

One of the most important advantages of MBO over 
Genetic Algorithm is MBO does a local search in each 
iteration. So MBO can avoid solely using crossover 

operator and mutation operator who is of worse local 
search ability.  

But MBO algorithm chooses some simple and 
random local searching methods, such as random walk 
and random flip [1], which will reduce the probability 
of obtaining optimal solution. So such low efficiency 
of Worker in MBO badly influences the whole 
performance of MBO. 

The Nelder-Mead method is a commonly used 
nonlinear optimization algorithm, proposed by Nelder 
& Mead.[7] It is a direct search method and does not 
use numerical or analytic gradients. The merit of 
Nelder-Mead method is that it is not sensitive to 
starting values and neither does it rely on derivatives 
nor on continuity of the objective function.  

So we utilize the local search ability and replace 
the Worker of MBO algorithm by the Nelder-Mead 
method.  

Some studies related to MBO have been carried 
out in our research. One of them is to increase the 
convergence speed. Here we make some introduce 
about it, because the main work in this paper will 
based on such improved MBO algorithm. 

In MBO algorithm, the probability of a drone 
makes with a queen is defined by the annealing 
function [1]. Not only the calculation of probability is 
complex, but also its calculation participants are 
complicated. So the whole process has a large 
computation burden.  

On the other hand, we have found that MBO with 
low speed need enough iteration times to approach 
optimization result. But several variables in MBO, 
such as energy, speed, can’t make sure about this. As 
the process going, the mating probability becomes 
smaller, which neither help the calculation process put 
up, nor help converge globally. So based on the 
original MBO algorithm, we have done some 
improvement on the original MBO algorithm. That is, 
by random initializing drones and restricting the 
condition of iteration, the computation process will 
become easier. The detail about this improvement has 
been discussed in other papers before. 

Here we further our research to improve the 
performance of MBO and propose an algorithm of 
Nelder-Mead -Marriage in Honey Bees Optimization 
(NMMBO) by taking the Nelder-Mead method as the 
Worker.  

The detail of NM-MBO is shown below. 
 

Define Q: the number of queens 
D: the number of drone 
M: the sperm theca size 

Initialize each worker with a unique heuristic 
Initialize each queen’s genotype at random 
Apply Nelder-Mead method to improve the queen’s genotype 
While the stopping criteria is not satisfied (Cycle Times bigger than 
Max Cycle Number or result is good enough) 



for queen = 1 to Q 
for i=1 to M 

generate a drone randomly 
add spermatozoa to the queen’s sperm theca  
generate a brood by crossovering the queen’s genome 

with the selected sperm, 
mutate the generated brood’s genotype 
use Nelder-Mead method to improve the drone’s 

genotype  
if the new brood is better than the worst queen 

replace the least-fittest queen with the new 
brood 

refresh the queen list depending on fitness 
end if 

end for 
end for 

end while 
Fig. 1: Nelder-Mead- Marriage in Honey Bees Optimization 
algorithm (NM-MBO) 
 

In Fig. 1, the algorithm is much easier than that in 
the MBO algorithm. And the number of the 
parameters is also less than the later. The whole 
process of NM-MBO has fewer complex probability 
calculations which will help increase the computation 
speed.  

In NM-MBO, we define three operators: 
Crossover, Mutation and Heuristic. Crossover and 
Mutate are same as that in GA. But the Heuristic 
operator is a new one proposed in NM-MBO.  

• Crossover: Crossover operator exchanges the 
pieces of genes between chromosomes. 
Through crossover, it introduces new 
chromosomes to the population, and hence the 
possibility of having fitter chromosomes.  

• Mutation: Mutation operation alters individual 
alleles at random locations of random 
chromosomes at a very probability. It might 
create a better or worse chromosome, which 
will either thrive or diminish through next 
selection.  

• Heuristic: Heuristic operator improves a set of 
broods. It help conduct local search on broods. 
For the good local convergence performance, 
we use Nelder-Mead method as the heuristic 
operator. 

5. Convergence analysis of  NM-
MBO algorithm 

In this section, we use Markov Chain to analysis the 
convergence of the Nelder-Mead-Marriage in Honey 
Bees Optimization algorithm. 

There are only three ways to change from one 
generation to another, is Crossover, Mutate and 
Heuristic. These operators depend only on the inputs 
and not restricted with time. Then we can get the 
following theorem. 

Definition 3: The state space of NM-MBO is 
[ ] { }{ }1 2, , , 0,1 , 1, ,N iX x t t t t i N= = … ∈ = … (6) 

where [ ]1 2, , , Nt t tK  is the binary bit cluster listed in 
turn. 

Define ( )f x  as the fitness function based on X  
and y is the fitness. So the fitness aggregate Y  is  

( ){ },Y y y f x x X= = ∈  (7) 
It is easy to see  

, 0x X y∀ ∈ >  (8) 
Define g Y= , we can get a ordered aggregate  

{ }1 2 1 2, , , ,g gy y y y y y> > >K K  (9) 
Crossover, Mutate and Heuristic operators lead to 

probable transition in the state space. And we use 
three transition matrix C , M and H to describe their 
infections respectively. Finally, we can get 

Tr C M H= ⋅ ⋅  (10) 
where Tr  is the transition matrix of the Markov chain 
of the NM-MBO algorithm. 

Theorem 4: The Markov Chain of NM-MBO is 
finite and homogeneous. 

Proof: 
The aggregate { }1 2, , , Mx x xK is finite. So the 

Markov chain composed of { }1 2, , , Mx x xK is finite. 
This finite space can also be said as a state space X . 

With ,i j Xρ ρ ∈ , the probability of 

transformation from the state iρ  to the state
jρ  at step 

t  only depends on iρ and is independent of time. So 
the Markov chain of the NM-MBO algorithm is 
homogeneous. 

End. 
Theorem 5: The transition matrixes of the 

crossover probability ( C ) and Heuristic probability 
( H ) in the NM-MBO algorithm are all stochastic. 

Proof: 
The square matrix C  is ij n n

C c
×

= ⎡ ⎤⎣ ⎦ . Then  

{ }
1

, 1, : 0 {1, }: 1
n

ij ij
j

i j n c and i n c
=

∀ ∈ ≥ ∀ ∈ =∑K K  (11) 

So C is stochastic. 
The square matrix H  is ij n n

H h
×

= ⎡ ⎤⎣ ⎦ . Then,  

{ }
1

, 1, : 0 {1, }: 1
n

ij ij
j

i j n h and i n h
=

∀ ∈ ≥ ∀ ∈ =∑K K  (12) 

So H is stochastic. 
End 

Theorem 6: The transition matrix of the NM-
MBO with mutation probability ( M ) is stochastic and 
positive. 

Proof: 



[ ]ij n n
M m

×
=  is a square matrix. Then 

{ }
1

, 1, : 0 {1, }: 1
n

ij ij
j

i j n m and i n m
=

∀ ∈ ≥ ∀ ∈ =∑K K  (13) 

So M  is stochastic. 
And the mutation has an influence on every 

position of a state vector. We can easily know 
,i jx x X∀ ∈ . Each position of ix  can mutate to the 

value of jx . So the probability of ix  mutate to jx is 
positive.  

So M  is positive. 
End 

Theorem 7: The Markov Chain of the NM-MBO 
( Tr ) is ergodic and with finite distribution.. 

( )lim 0, ,ij jt
tr t tr i j X

→∞
= > ∈  

Proof: 
According to Theorem 5, Theorem 6 and(10), Tr  

is positive. And according to Theorem 1, this 
proposition is proved. 

End 
Definition 4: The fitness of one generation is the 

largest one of the individuals in this generation. 
{ }( ) ( ){ }1 2

1,2,...,
, maxK i

i K
f x x x f x

=
=K  (14) 

Define { }( ){ }1 2 1 2 1 2, , , , , , , , , ,i K K i KX x x x f x x x y x x x X= = ∈K K K , 

iy are defined at(9), that is, the fitness of all the 

individuals in iX  is equal to iy . 
Definition 5: For an arbitrary initial generation 

X(0) , 1y is of the largest fitness,  

1lim Pr( ( ) ) 1( )
t

f X yt
→∞

= =  (15) 
Then the algorithm is global convergence. 

Theorem 8: The NM-MBO converges to the 
global optimum. 

Proof: 
We can define  

{ }iTX X i N= ∈  (16) 
For Definition 4 and Theorem 4, TX is a Markov 

Chain. In the same time, we define  
{ }( )i iP X P iX X= ∈  (17) 

iX is defined in (12). 

We can see that ( ) 0iP X >  and 
1

( ) 1
n

i
i

P X
=

=∑  

Define ( , )i jP X X is the probability state iX  go 

to jX , we can get 

1 1

( , ) , ,( , )
ji

NN

i j ni nj ni i nj j
ni nj

P X X x X x XP x x
= =

= ∈ ∈∑∑  (18) 

Because NM-MBO saves the best individual at 
every generation, so ( , ) 0,i jP X X i j= < . 

And the transition matrix of TX ’s Markov Chain 
can be write as follows: 

1 1 1

1

2 1 2 2

1
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1 0 0
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For Theorem 3， 
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For Theorem 7 and Theorem 1, P∞ is a stable 
random matrix, So 1R∞ = .That is  

( )

( )

2 1

1

lim ( , ) 1
lim

1lim ( , )

k

k

k
k

nk

P X X
kR R

P X X

→ ∞
∞

→ ∞

→ ∞
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⎢ ⎥⎢ ⎥= = = ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

M M
(22) 

So every state in TX  will go to 1X , if the iteration 
number is big enough, this proposition is proved. 

End 

6. Simulation 
To test the convergence performance of NM-MBO, we 
choose original MBO algorithm and Genetic 
Algorithm for comparison. 

We did the simulation on two parts, one using 
some popular complex Evaluation Functions and the 
other using Traveling Salesman Problem (TSP).  

6.1. Comparison on evaluation 
functions 

The initial value is generated randomly, and each 
figure shows the average results of 20 times 
simulation with one Evaluation Function.  

• Evaluation Function 1: Sphere Model  
2

1

( ) , 100i i
i

f x x x
=

= ≤∑  (23) 
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Fig. 2: Results of NM-MBO, MBO and GA with evaluation 
function 1. 
 

• Evaluation Function 2: Schwefel’s Problem 1 
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Fig. 3: Results of NM-MBO, MBO and GA with evaluation 
function 2. 
 

• Evaluation Function 3: Schwefel’s Problem 2 
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Fig. 4: Results of NM-MBO, MBO and GA with evaluation 
function 3. 
 

• Evaluation Function 4: Schwefel’s Problem 3 
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Fig. 5: Results of NM-MBO, MBO and GA with evaluation 
function 4. 
 

• Evaluation Function 5: Generalized 
Rosenbrock’s Function 
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Fig. 6: Results of NM-MBO, MBO and GA with evaluation 
function 5. 
 

• Evaluation Function 6: Step Function 
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Fig. 7: Results of NM-MBO, MBO and GA with evaluation 
function 6. 
 

• Evaluation Function 7: Generalized 
Rastrigin’s Function 
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Fig. 8: Results of NM-MBO, MBO and GA with evaluation 
function 7. 
 

• Evaluation Function 8: Ackley’s Function 
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Fig. 9: Results of NM-MBO, MBO and GA with evaluation 
function 8. 

6.2. Traveling salesman problem  
A Classical Traveling Salesman Problem (TSP) has 
been an interesting problem. Given a number of nodes 
and their distances of each other, an optimal travel 
route is to be calculated so that starting from a node 
and visit every other node only once with the total 
distance covered minimized.  

Here TSP based on the data form TSPLIB is 
solved by NM-MBO, MBO and GA algorithm 
respectively. 
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Fig. 10: TSP with 16 nodes solved by NM-MBO, MBO and 
GA. 
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Fig. 11: TSP with 48 nodes solved by NM-MBO, MBO and 
GA. 

6.3. Some remarks 
From the above, we can see that the NM-MBO show 
better performance than MBO and GA , not only to 
solve TSP but also to optimize the evaluation function, 
and can keep converge faster with different node’s 
number. 

The simulation results show that: 
• NM-MBO is convergent and keeps good 

performance for all these test functions, 
though these test function are more complex 
than the normal ones and may have many 
local optimization points. 

• NM-MBO performs better than MBO and GA. 
NM-MBO converges more quickly, especially 
at initial part. Particularly, even if the initial 
condition is worse than MBO and GA, NM-
MBO can show finer result. 

• As for MBO, because of the process of 
choosing drones with some probability, 
MBO’s performance is not always well. It 
often keeps staying at a value for some time 
and then drops dramatically at some step. 



Sometimes MBO is better than GA, but 
sometimes not. 

7. Conclusions 
Convergence performance is very important for 
optimization methods. In this paper, we proposed an 
algorithm of Nelder-Mead Method in Honey Bees 
Optimization (NM-MBO) to overcome the slowness 
of the original MBO.  

MBO has a set of parameters to coordinate and 
much of calculation time is cost. While, NM-MBO 
avoids such complex process and also can reach the 
expect result. It generates a drone randomly each time 
and mate with a finite quantity of queens. So NM-
MBO can not only avoid the local optimum, but also 
increase the speed. Also NM-MBO is easy to 
implement and has few parameters to adjust. And the 
global convergence is preserved for optimization. 
Simulating with complex evaluation functions and 
TSP, NM-MBO shows better performance than MBO 
and GA.  

The algorithm still deserves deep study. And the 
research about NM-MBO will be carried out and will 
be tested and improved with practical cases in the 
future. 
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