
Formalizing Interactive Institution with RBA Calculus

Guoyong Cai1 Ji Gao1 Junyan Qian2 Lingzhong Zhao2
1College of Computer Science and Technology, Zhejiang University, Hangzhou 310027，P. R. China

2College of Computer Science and Technology, Guilin University of Technology, Guilin 541004，P.R. China

Abstract
Although organization oriented paradigm is a
promising way to design dynamic interactive
computational systems in open and heterogeneous
networked environment, there is still lack of a suitable
formal approach to support this paradigm. RBA, a
boxed ambient calculus extended with separated
regulating mechanism, is proposed to design such
systems. In RBA, an ambient is an encapsulating
mobile unit parameterized with role-governors that
regulating actions of the corresponding role-players
participating into this ambient. Firstly the formal
syntax and semantics of RBA are given. Secondly an
electronic institution model is applied to illustrate the
RBA approach. Based on the bisimulation theory of
process calculi, verification and validation of design
specifications are supported with RBA approach.

Keywords: Interactive computation, Ambient calculus,
Electronic institution, Behavior regulation

1. Introduction
Globally interactive and collaborative computational
systems are presently one important type of
information-based systems, which forms different kind
of virtual organizations penetrating to people’s
everyday lives, such as electronic community,
electronic commerce systems. To develop such kind of
systems efficiently and correctly, different
methodologies and frameworks have been proposed to
cope with the difficulties while designing such systems;
among them agent-oriented methodology and
organization-based frameworks are becoming the most
promising ways. Agent-oriented paradigm [1] provides
good structural methods to identify the main building
blocks of such systems exploiting agents, roles and
their relations in organizational settings, such as
electronic institution or some policy-based frameworks,
which provide good starting points toward
understanding development of such systems. However
currently these techniques haven’t provided adequately
support for building this type of systems in a formal

way that helps the verification and validation at
suitable abstraction level. Especially when concerning
the design phase of such systems, the main complexity
arises from the complex interactive and regulating
patterns among agents and their regulators [2]-[3].
Presently these agent-oriented or organization-oriented
paradigms do not provide effective means to deal with
these aspects adequately [4]-[6]. Therefore there is a
great need to enhance these paradigms by providing an
appropriate design level specification language to
encapsulate regulative and interactive patterns in
suitable abstraction and compositional modes.

On the other hand, due to its compositional and
formal features, process calculi has been widely
adopted for the design specification of concurrent
systems, especially those with communicating,
concurrently executing software components. However,
most of the efforts are oriented to study process
algebras suitable for homologous and closed
environment, such as CCS [7] or the π-calculus [8],
although another type of process calculi, such as
ambient calculus [9]-[10], provide some encapsulation
mechanism to process movement in networked
environment, it is still not adequate to deal with the
complex interactive and regulative patterns appear in
virtual organization in open and heterogeneous
networked environment. Further more traditional
process calculi study does not incorporate itself with
well formed concepts originating from organizational
theory, such as role, agent, and policy.

To achieve better practice in organization oriented
collaborative system development, we argue that both
organization oriented and process oriented structural
mechanisms are necessary, process calculi should be
extended with organization-based regulating
mechanisms. In this paper, RBA (Regulating Boxed
Ambient), an extended boxed ambient calculus with
regulating mechanism under organizational framework
is proposed. Electronic institution model are applied to
show the usage of the proposed calculus language.

The paper is organized as follows. In Section 2 the
feature of ambient calculus is briefly introduced, and
then the syntax and semantics of RBA is given. In
section 3, an electronic institution model is introduced

which will serve as the meta regulating framework
towards open and heterogeneous virtual environment
for interactions and regulations. In section 4, RBA is
applied to design regulated interactive computational
system under electronic institutional framework. Some
conclusion is drawn in the final section.

2. Ambient calculus with regulating
mechanism

2.1. Background and motivation
Ambient Calculus (AC) [10] is a process algebra that
focuses on the notions of locations, mobility and
authorizations. The underlying model of the AC is
based on the notion of ambient. An ambient is a place
limited by a boundary where computations or
interactions take place. They are hierarchically
structured and the evolving path towards a destination
is not abstracted away. Processes are confined to
ambients and ambients move under the control of
processes. Terms in Ambient based calculi describe
configurations of locations and sub-locations, and
interactive computation happens as a consequence of
movement of locations. The three primitives for
movement allow: an ambient to enter another ambient
(In-movement), an ambient to exit another ambient
(Out-movement), a process to dissolve an ambient
boundary thus obtaining access to its content (Open-
movement). Generally an ambient is denoted by n[P],
which means process P runs in ambient n. The basic
capabilities in AC are defined as M::= n| x | in M| out
M| open M| ε| M.M’. The process is defined as
P::=0|(x).P|<M>| (vn)P| n[P] | !P | P|Q | M.P | P+Q |
X(v)

Different variants of AC have been proposed [10].
Boxed ambient is a variant of the AC that drops the
open capability and introduce fine-grain mechanisms
for ambient interactions, such as non-local
communications between one ambient and its
parent/child ambients. These changes provide better
support for the specification of management policies.
Type systems are designed to enforce secure ambient
interactions[11]. However type systems are static and
inflexible to deal with complex regulative patterns
appearing in open organizations.

Instead of depending on type systems, in this paper
we propose to enhance the boxed ambient with
parameterized regulating capabilities. That is every
ambient is equipped with a number of governors that
supervise the activities of the corresponding
components (sub-ambients) running inside the ambient.
Hence the ambient notation n[P](resp. n[a[P]] etc.) is

extended to n(G)[P](resp. n(G)[a[P]]) which denotes
that process P (resp. ambient a[P]) runs in ambient n
and is regulated by G. If there is no need to have such
governors for an ambient, it is also denoted by original
notation n[P]. Therefore n[P] is taken as a special form
of n(G)[P]. We call n(G)[P] supervised ambient and
n[P] non-supervised ambient. Based on this idea
originated from organizational supervising theory, in
the following section, we propose RBA calculus--an
enhanced ambient calculus.

2.2. An extension of boxed ambient
We assume a countable set of names, N, ranged over
by m, n,…; u, v,w,…; x, y, z,… and their decorated
versions (m’,...) and vector versions (,v w ,…). To
simplify reading, we shall use m, n,… to denote
ambient names, x, y, z,…to denote input variables, u,
v,w,... to denote generic names, and W, X, ….to denote
the identifier of defined processes or governors. RBA
is presented from five aspects: syntax, structural
equivalence, process reductions, governor reductions
and configuration reductions.
Definition 2.1. (RBA processes, actions and conditions)
 P::=0 | (x)η.P | <M>η.P | M.P | u[P] | P|P | (vn)P | !P

| ()X v

M::=u | in_u | out_u | M.M | new(n,X)| spawn(P)|
box(n,P)

η::= | u
This definition is an enhance version of classical

ambient calculus. It adopts a shared channel way to
neighboring communications among parent ambient
and child ambient via input (x)η.P and output <M>η.P. It
also adds new capabilities (new, spawn and box) for
dynamic generation of name mapping, process and
ambient. new(n,X) is used to create a fresh association
between n and X. spawn(P1).P2 activate P1 in parallel
with P2, thus it corresponds to P1|P2. box(n,P) is used
to create a new ambient, i.e. n[P].The other notations
are the same as in original ambient calculus.
Definition 2.2. (RBA structural equivalence) The
structural equivalence relation, ≡, is the least
equivalence closed by parallel composition, restriction
and ambient encapsulation, including alpha-conversion
and satisfying the following axioms.

P|0≡P P1|P2≡P2|P1
 P1|(P2|P3) ≡(P1|P2)|P3 !P≡P|!P

(vn)0≡0 (vn)vm)P≡(vm)(vn)P
P1|(vn)P2≡(vn)(P1|P2) if n∉fn(P1)
m[(vn)P] ≡(vn)m[P] if n≠m (M.M’).P≡M.(M’.P)

Definition 2.3. (RBA process reductions) The non-
supervised process reduction relation, →, is the least
relation satisfying the following axiom and rules:

(1)
()

(?). [:]new nnew
new x P P x n⎯⎯⎯→ =

(2)
1()

1 2 2

(). spawn Pspawn

spawn P P P⎯⎯⎯⎯→

(3)
1 1(,)

1 2 2

(,). box n Pbox

box n P P P⎯⎯⎯⎯→

(4)
()

()

[:] ' if ()
() '

a v

a v

P x v Prec X x P
X v P
= ⎯⎯⎯→
⎯⎯⎯→

�

(5)
()

(). in nin
in n P P⎯⎯⎯→

(6)
()

(). out nout
out n P P⎯⎯⎯→

(7)
()

. wr v

wr
v P P< > ⎯⎯⎯→

(8)
()

(). [:]rd v

rd
x P P x v⎯⎯⎯→ =

(9)
.

nvn
rwr

v P P< >< > ⎯⎯⎯→

(10)
()

() . [:]

nvn
rrd

x P P x v⎯⎯⎯→ =
 (11) '

[] [']
P P

n P n P
→
→

(12)
'

1 1
'

1 2 1 2| |
P P

P P P P
→
→

 (13)
'

'() ()
P P

vn P vn P
→
→

For regulating the process actions or interactions,
we propose a separated special process, called governor
process, which regulate (permit or reject) the actions of
the regulated processes. A governor G perform
reduction () 'p vG G⎯⎯⎯→ , which denotes G currently
permit p(v) occur in the regulated process, and if p(v)
requests actually in the regulated process, then G
transfers to G’. The syntax of governor processes is
defined as follows.
Definition 2.4. (RBA governors and permissions)
 G∈Gov::= when b ()p x then G | when b

G\ ()p x | ⊥ | ⊤ | G1∧G2 | G1∨G2 | ()W v

p∈Perm::= | | | | |new spawn in out lcom

 |wrdn rddn

 b∈Bool::=⊥|⊤| v1=v2|b1∨b2 |b1∧b2|¬b
The basic construct for governors is when b ()p x

then G, where p is the permitted action, x is a
sequence of variables bound by the construct, b is a
boolean expression, and G is a governor process. It
means that if b is evaluated to true, then ()p x is
permitted and the governor evolves to G. The basic
permission set Perm is inspired by the co-actions in
safe ambient calculus [11]. But here we use co-actions
as regulated authorizations, not used as those in
synchronous calculi. G\ ()p x denotes authorization

allowed by G except ()p x . The other constructs are
similar to those used logic expressions.
Definition 2.5. (RBA governor process reductions) The
governor reduction relation, →, is the least relation
satisfying the following axiom and rules:

1 ()

[:] true closed
when () then [:]p v

b x vpermit v
b p x G G x v

=
⎯⎯⎯→ =

()

2 ()

[:] true '
when \ () when '\ ()

p v

p v

b x v G Gpermit
b G p x b G p x
¬ = ⎯⎯⎯→

⎯⎯⎯→
'()

3 '()

' '
when \ () when '\ ()

p v

p v

G Gpermit p p
b G p x b G p x

⎯⎯⎯→
≠

⎯⎯⎯→
'()

()

[: '] ' ()
(')

p v

p v

G x v Gref W x G
W v G

= ⎯⎯⎯→
⎯⎯⎯→

�

()

()
1 2

' {1, 2}
 '

p v
i

p v

G Gor i
G G G

⎯⎯⎯→
∈

∨ ⎯⎯⎯→

() ()' '
1 1 2 2

() ' '
1 2 1 2

p v p v

p v

G G G Gand
G G G G
⎯⎯⎯→ ⎯⎯⎯→
∧ ⎯⎯⎯→ ∧

()
 closed

p v
v�

� �⎯⎯⎯→
 ⊥

⊥ ⎯⎯→⊥

Generally a RBA system consists of multiple
processes and governors. For simplicity we denote the
form of system configuration as n(G)[P], where P is a
process or an ambient. If processes are not assigned
governors, then they will evolve according to reduction
rules defined in definition 2.3. If a process is assigned a
governor, system configuration transitions will depend
on both the process and the governor. The system
configuration transition rules are defined in the
following.
Definition 2.6. (RBA system configuration transition
rules)

() ()' '
()[] (')[']

new n new nP P G Gnew
n G P n G P

⎯⎯⎯→ ⎯⎯⎯→
a

1 1() ()

1

' '
()[] (')[, ']

spawn P spawn PP P G Gspawn
n G P n G P P

⎯⎯⎯⎯→ ⎯⎯⎯⎯→
a

1 1 1 1(,) (,)

1 1

' '
()[] (')[[], ']

box n P box n PP P G Gbox
n G P n G n P P
⎯⎯⎯⎯→ ⎯⎯⎯⎯→

a

2 2

1 1 2

() (,) '
1 1

(,) (,)' '
2 2

1 1 1 2 2 2
' '

2 2 1 1 1 2

'

'
()[, ()[,], ()[]]

(')[, ()[()[',],]]

in n in n n

in n n in n n

P P G G

G G G Gin
n G M n G P M n G M

n G M n G n G P M M

⎯⎯ ⎯→ ⎯⎯ ⎯→

⎯⎯ ⎯→ ⎯⎯ ⎯⎯→
a

2 2

1 1 2

() (,) '
1 1

(,) (,)'
2 2

2 2 1 1 1 2
' '

1 1 1 2 2 2

'

'
()[, ()[()[,],]]

(')[, ()[',] , ()[]]

o u t n o u t n n

o u t n n o u t n n

P P G G

G G G Go u t
n G M n G n G P M M

n G M n G P M n G M

⎯ ⎯ ⎯→ ⎯ ⎯ ⎯ ⎯→

⎯ ⎯ ⎯⎯→ ⎯ ⎯ ⎯ ⎯→
a

() ()' '
1 1 2 2

()

' '
1 2 1 2

 '
()[, ,] (')[, ,]

wr v rd v

lcom v

P P P P

G Glcom
n G M P P n G M P P

⎯⎯⎯→ ⎯⎯⎯→

⎯⎯⎯→
a

2 1()' '
1 1 2 2

' '
1 2 1 2

1
1 1 1 2 2 2

' ' ' '
1 1 1 2 2 2

() [, () []]

 () [, () []]

n nv v

w r d n

P P P P

G G G Gr c o m
n G P n G P

n G P n G P

< >⎯ ⎯ ⎯→ ⎯ ⎯ ⎯→

∧ ⎯ ⎯ ⎯→ ∧
a

2 1() ' '
1 1 2 2

' '
1 2 1 2

2
1 1 1 2 2 2

' ' ' '
1 1 1 2 2 2

() [, () []]

 () [, () []]

n nv v

r d d n

P P P P

G G G Gr c o m
n G P n G P

n G P n G P

< >⎯ ⎯ ⎯→ ⎯ ⎯ ⎯→

∧ ⎯ ⎯⎯→ ∧
a

3. Electronic institutional models
Electronic institution (EI) is a promising framework to
develop regulated interactive computation system in
open networked environment. To illustrate the RBA
capability, we use RBA to formally represent the EI
model. But before presenting the procedure, we first
briefly introduce the EI model. Based on the work [12],
EI is formulated as follows.
Definition 3.1. An electronic institution is defined as a
5-tuple , , , , PSEI PS IR ssd N=< > , where:

(1) PS stands for a performative structure; (2) IR
is a subset of roles representing the institutional roles;
(3) stands for the hierarchy partial order over the
roles; (4) ssd is the set of static separation of duties
between roles; and (5) PSN stands for a set of
normative rules.
Definition 3.2. The performative structure PS is

, , , , , , , ,O
0 L T EPS=<S T s s E; f f ; f C ML μΩ > where: (1)

S is a set of scenes; (2) T is a set of transitions; (3)

0s S⊆ is the initial scene; (4) s SΩ⊆ is the final

scene; (5) I OE E E= ∪ is a set of arc identifiers where
IE S T⊆ × is a set of edges from scenes to transitions

and OE T S⊆ × is a set of edges from transitions to
scenes; (6)

2
: V RALf E DNF ×→ maps each arc to a

disjunctive normal form of pairs of agent variable and
role identifier representing the arc label; (7) :Tf T→I

maps each transition to its type; (8) :O O
Ef E →Z

maps each arc to its type (one, some, all or new); (9)
:C E ML→ maps each arc to a meta- language

expression of type Boolean, i.e. a formula representing
the arc’s constraints that agents must satisfy to traverse
the arc; (10) ML is a meta-language; (11)

: {0,1}Sμ → states whether a scene can be multiply
instantiated at run time or not.
Definition 3.3. A scene of EI is a tuple

, , , , , , , , ,S 0 f r r R r r RS=<R DF W w W (WA) (WE) min,max>θ λ∈ ∈

 where : (1) R is the set of scene roles involved in that
scene; (2) DFS is the restriction to the scene s of the EI
dialogical framework defined below; (3) W is the set of
scene states; (4) w0 ∈W is the initial state; (5) Wf ∈W is
the set of final states; (6) r r R(WA) W∈ ⊆ is a family of

sets such that rWA stands for the set of access states

for role r R∈ ; (7) r r R(WE) W∈ ⊆ is a family of non-

empty sets such that rWE stands for the set of exit

states for role r R∈ ; (8) W Wθ ⊆ × is a set of
directed edges; (9) : Lλ θ → is a labelling function,
where L can be a timeout, or an illocution schemata
and a list of constraints; (10) :min,max R→� min(r)
and max(r) return the minimum and maximum number
of agents that must and can play role r R∈ .
Definition 3.4. A dialogue framework DF is a tuple
DF=<O, L, I, RI ,RE,RS>, where: (1) O stands for the EI
domain ontology; (2) L stands for a content language to
express the information exchanged between agents; (3)
I is the set of illocutionary particles, usually it takes the
form of i(a, r, a’,r’,m,t), meaning that agent a playing
role r sends illocution i with content m to agent a’
playing role r’ at time t. (4) RI is the set of internal roles;
(5) RE is the set of external roles; (6) RS is the set of
relationships over roles

Dialogue framework, scene, performative structure
provides a basic interactive space of agents. Based on
these structural notions, some predicates or functions
can be defined. These definitions will further applied to
specify normative rules for an EI. For example, if we
define the following predicates, one type of normative
rules takes the form of definition 2.5.

(1) uttered(s, w, i) denoting that a grounded
illocution unifying with the illocution scheme i has
been uttered at state w of scene s.

(2) uttered(s, i) denoting that a grounded
illocution unifying with the illocution scheme i has
been uttered at some (unspecified) state of scene s.
Definition 3.5. Normative rules are first-order
formulae of the form

1 0
((, [],))

j j

n m

j k l kj k
u ttered s w i e

= =
∧ →∧ ∧

' '
' ' ' '

1 0
((, [],))

j j

n m

j k l kj k
u ttered s w i e

= =
∧∧ ∧ where: js ,

'
js are scene identifiers,

jkw ,
'

jkw are states of js and
'
js respectively;

jli , '
jli are illocution schemata li of

scenes js and '
js respectively, and ke , '

ke are Boolean

expressions over variables from the illocution schemata

jli and '
jli respectively.

The intuitive meaning of normative rules is that if
grounded illocutions matching

1l
i ,…,

nl
i are uttered in

the corresponding scene states and the expressions

1e ,…, me are satisfied, then grounded illocutions

matching
1

'
li ,…, '

nl
i satisfying the expressions

'
1e ,…, '

me must be uttered in the corresponding scene
states.

Although EI model has been studied by several
researchers and this type of EI representation provides
a quite clear image to electronic institutions, however it
is rather informal and concurrency haven’t been
considered in appropriate way [3][6][12]-[13]. As lack
of concrete syntax and semantics definition for EI, we
can not execute the EI specification and prove some
properties that an EI should maintained with structural
techniques. Thus in the following, we propose to
represent EI with RBA, and then EI verification or
validation can be coped with process bisimulation
theory.

4. Design electronic institutions with
RBA
From the above presentation of RBA and EI, there is an
attractive mapping of scenes to immobile ambients
with governors, where the conversation can take place
via speech acts, and of agents to mobile ambients
without governors, which move from scene to scene
under its internal decisions given the appropriate role-
playing capability. That is for each scene, a
corresponding ambient with role governors will be
built to regulate the joint task activities performed by
the joining role playing agents, which itself will be
modelled by an mobile ambient with role playing
capabilities. For instance, we use ambient s1(r1, r2)[PS]
to denote a scene named s1 with two role governors r1
and r2, and PS denotes the process own by the scene
itself; and we use ag[r1] to denote an agent named ag
which has capability of playing role r1. Combining
these two parts, we can generate a scene instance, such
as s1(r1, r2)[PS, ag1[r1],ag2[r1],ag3[r2]]. In this instance,
there are two agents (ag1 and ag2) who move into the
scene and play the role r1, while only one agent (ag3)
moves into and plays the role r2.

Generally an EI is mapped to RBA constructs
according to the criteria listed in table 1.

EI RBA notation
Scene name Immobile

ambient name
n,s,…∈Nam
e

Role-player(agent) Mobile ambient
with role
playing
capability

ag[role]

Role-governor Ambient
governor

r,g,…∈G

Scene with roles Ambient with
governors and
processes

Scenei(rij)[Si
P]

Scenes Set of ambients {Scenei(rij)[S
iP]}

Performativ
e Structure

transtion
s

capbilities p∈Perm

illocutions domain task
messages

x

norms Capability
constraints

b∈Boolean

Table 1: Transfer elements from EI constructs of RBA.

To further illustrate the application of RBA to EI
design, a classical example designed with RBA is
presented in the following. Suppose that there is a need
to construct an academic workshop institution which
supports to deal with the working scenes of organizing
a workshop. We suppose there are three main scenes
involving in this institution. That is submitting papers,
reviewing papers and paying publication fees. For each
scene, there exist a scene manager and participating
agents. For example, in the submitting scene, there are
one manager role (manager1) and one author role. The
three scenes and attached roles are shown in figure 1.
The illocutions related to domain activities are labelled
as tags along the lines in figure 1. To understand easily
the data flow, institutional data files are explicitly
separated from institutional scenes in this figure.

According to the criteria, the RBA of this EI is

specified in table 2. Line (1) indicates that this
institution is composed of four scenes (scene0-3).
Scene0 is the top scene that represents the register
scene in which agent can register to play roles of the
institution. If one agent successfully registers into the
institution, a certificate is issued to the agent, with
which authorized agents can join other corresponding
scenes if they decide to do so. For example if an agent
registers successfully as an author player in scene0,
then it can join submitting scene to submit a paper to
the workshop or query the information related to its
paper submitted. During the scene interaction, author
player agent can only do the authorized actions
according to the author governor. Other actions will not
be permitted.

With RBA formalism of EI, EI design can be
verified with process theory. This aspect will not be
presented here for beyond the scope of this paper.

5. Conclusions
Developing trustable interactive system is a difficult
work in open and heterogeneous environment. Social
and organizational theories provide suitable starting
point to guide the development of such type of systems,
there is still lack of systemic engineering method to
make them much practicable usage. For instance, EI
has been discussed by some papers [8]-[9], but many of
them focus on modeling EI with deontic logic or state-
based formalism, which is difficult to use when

focusing on design and implementing EI. The work in
this paper proposes to design globally interactive
collaboration system starting from electronic institution
model and specified with RBA. RBA is designed to
present the complex interactive and regulative patterns
in system design specification. Through formal defined
operational semantic rules, system requirement norms
can be verified at design level. A proof of concept
example has been working out and the experience
shows some great advantages over other approaches
when developing such type of interaction complex
systems. As far as future work is concerned, we are
studying on verifying EI in RBA formalism.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of Guangxi Province, China (Grant
No. 0728089).

References
[1] F. Zambonelli, N. Jennings, M. Wooldridge,

Developing multiagent systems: the gaia
methodology. ACM Transactions on Software
Engineering and Methodology, 12 (3): 317-370,
2003.

[2] Nalini Venkatasubramanian and Carolyn L.
Talcott, Reasoning about meta level activities in
open distributed systems. In Symposium on
Principles of Distributed Computing, pp.144-152,
1995.

[3] F. Dignum. Norms and Electronic Institutions. L.
Goble and J.-J.C. Meyer (Eds.): DEON 2006,
LNAI 4048: 2-5, 2006.

[4] Egon L. van den Broek, Catholijn M. Jonker,
Alexei Sharpanskykh and Jan Treur, et.al.,
Formal Modeling and Analysis of Organizations.
O. Boissier et al. (Eds.): ANIREM and OOOP
2005, LNAI 3913: 18-34, 2006.

[5] C. Sibertin-Blanc, F. Amblard and M. Mailliard,
A Coordination Framework Based on the
Sociology of Organized Action. O. Boissier et al.
(Eds.): ANIREM and OOOP 2005, LNAI, 3913:
3 – 17, 2006.

[6] V. Dignum, A model for organizational
interaction. Ph.D. Thesis, Dutch Research School
for Information and Knowledge Systems, ISBN
90-393-3568-0, 2004.

[7] R. Milner, Communication and Concurrency,
Prentice Hall, 1989.

[8] R. Milner, J. Parrow, D. Walker, A calculus of
mobile processes, Information and Computation,
100 (1): 1-77, 1992.

[9] M. Bugliesi, S. Crafa, M. Merro and V. Sassone.
Communication and Mobility Control in Boxed
Ambients. Information and Computation, 202(1):
39-86, 2005.

[10] D. Gorla, Comparing calculi for mobility via their
relative expressive power. Technical Report
09/2006, Dipartimento di Informatica, Universit`a
di Roma “La Sapienza, 2006.

[11] L. Cardelli, G. Ghelli and A. D. Gordon, Types
for the Ambient Calculus. Information and
Computation, 177(2): 160–194, 2002.

[12] M. Esteva, Electronic Institutions: from
specification to development. Number 19 in IIIA
Monograph Series. PhD Thesis, 2003.

[13] M. Esteva, D. de la Cruz, C. Sierra, ISLANDER:
an electronic institutions, editor. In: Proc. of the
1st International Joint Conference on
Autonomous Agents and Multi-agent Systems,
pp.1045–1052, 2002.

