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Abstract  
Fishery prediction by using long-term accumulated 
hydrology elements and catch statistic data has been 
an urgent requirement in aquatic domain. In this paper, 
18 different WCPO (Western and Central Pacific 
Ocean) hydrology elements were collected and a key 
influence element set was found by using Rough Set 
Theory before training to build up the forecasting 
model rather than using ε-SVR directly. Comparative 
experiments with traditional ε -SVR show that the 
Rough Set could remove redundancy elements 
effectively; the Rough-SVR results in a better 
goodness of fit than the traditional ε-SVR and it is 
superior to multiple regression analysis. 
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1. Introduction 
Tuna fishery is one of the most important developing 
fields during the Eleventh Five-Year Plan which has 
attracted many Chinese experts in fisheries into the 
study of fishery prediction. Traditional predicting 
methods adopt a multiple regression analysis [1] while 
dynamic hydrology elements are not prone to meet its 
requirement of input, and don’t produce a high 
goodness of fit in results. FN (Functional Networks) 
and ANN (Artificial Neural Networks) were also 
adopted [2], while the problem of local optima can’t 
be solved thoroughly.  In the face of long-term 
accumulated hydrology elements and catch statistic 
data of WCPO (Western and Central Pacific Ocean), 
there emerged an urgent requirement to make the 
fishery prediction more precise by using hydrology 
elements such as the Sea Surface Temperature (SST), 
Sea Surface Temperature Anomaly (SSTA) and sea 
temperature of different depth and also adopting a 
more appropriate data mining method. 

Support Vector Machine (SVM) is a new machine 
learning method introduced by Vapnik [3] which 
implements the structural risk minimization inductive 

principle with the purpose of obtaining a good 
generalization from limited size data sets. It has 
numerous attractive features and promising empirical 
performance. It provides high generalization 
performance without the need to add a priori 
knowledge, even when the dimension of the input 
space is very high. This ability results from their main 
difference from the other types of neural networks, 
that they are an exact implementation of the Structural 
Risk Minimization (SRM) principle. 

Attribute simplifying is one of the most successful 
applications of the Rough Set Theory [4]-[5]. For 
many of the large-scale systems, only a part of the data 
table attributes need to be reserved. It will improve the 
clarity of potential knowledge if the redundant 
attributes could get removed. It turned out to have a 
better performance that the attributes of training sets 
have been simplified before training.  

In Section 2, we introduce the concept and 
algorithm of Rough Sets – Support Vector Machine as 
the discernibility matrix proposed by Bazan, Skowron 
& Synak [6]. It is adopted to remove the redundant 
attributes. Section 3 introduces the modeling 
processing of WCPO katsuwonus pelamis purse seine 
catch by using hydrology temperature elements
（20°N～25°S ，175°W～0°W） , purse seine net 
number and amount of catch. Finally the paper will 
present the evaluation and result of applying this 
method for prediction as compared with the traditional 
Support Vector Regression (SVR). 

2. Rough Sets and Discernibility 
matrix 

2.1. Rough sets 
An information system is a pair S = (U,A), where U is 
the universe of discourse with a finite number of 
objects (or entities). A is a set of attributes defined on 
U. Each a∈A corresponds to the function a : U → Va, 
where Va is called the value set of a. Elements of U 
are called situation, objects or rows, interpreted as, e.g., 
cases, states, patients, observations. 



With any subset of attributes B⊆A, we associate 
the information set for any object x ∈ U by  

InfB(x) = {(a, a(x)): a ∈ B} 
 An equivalence relation called B-indiscernible 

relation is defined by 
IND (B) = {(x, y) ∈ U × U: InfB(x) = InfB(y)} 
Two objects x, y satisfying the relation IND(B) 

are indiscernible by attributes from B. [x]B is referred 
to as the equivalence class of IND(B) defined by x. A 
minimal subset B of A such that IND(B) = IND(A) is 
called a reduct of S. Suppose S = (U,A) is an 
information system, B ⊆ A is a subset of attributes, 
and X ⊆ U is a subset of discourse, the sets 

B(X) = {x ∈ U: [x]B ⊆ X},B(X) = {x ∈ U : 
[x]B_X _= φ} 

are called B-lower approximation and B-upper 
approximation respectively. 

In a decision table DT = (U,A ∪ {d}), where {d} 
∩ A = φ, for each x ∈ U, if [x]A ⊆ [x]{d}, then the 
decision table is consistent, or else it is inconsistent. 

2.2. Discernibility matrix 
Given a decision table DT = (U,A∪{d}), where U = 
{u1,u2,…,un}, A = {a1,a2, …,ak}, by discernibility 
matrix of the decision table DT we mean the(n × n) 
matrix: 
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The discernibility function corresponding to 

M(DT) is defined as follows:  
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3. Support Vector Regression 
The model for regression as following: given a 
training set S={(xi，yi)} ( i =1,2,3,…,m，(xi，yi)∈  
Rn·R) of input xi and associated targets yi , the goal of 
regression problem is to fit a flat function f(x) which 
approximates the relation inherited between the data 
set points and it can be used later on to infer the output 
y for a new input data point x . 

To predict the catches of Katsuwonus Pelamis, xi 
is the elements that affects the catch e.g. hydrology 
elements and purse seine net number, n is the number 
of the elements, yi∈R is the number of input data, 
here is the  catch data, m is the number of input data in 
this article,. 

 Suppose the function f(x) is expressed as: 
( ) , ( )f x x bω φ=< >+  : , ,nR F F b Rφ ω∈ ∈→  (1)  

where <,> is dot product of vector, b is a bias 
term, and φ  is a nonlinear map which mapping the 
input x into a high-dimensional feature space F 

According to SRM principle, that function f(x) is 
flat in the case of Eq. (1) means that one seeks the 
minimization of the following expression: 
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where L( ・) is a loss function, C is a constant. 
Many forms for the loss function can be found in 

existing literature: e.g. linear, huber and quadratic loss 
function, etc. In this paper, Vapnik’s loss function [5] 
is used, which is known as ε -insensitive loss function 
and defined as: 
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Thus, the regression problem can be written as a 
convex optimization problem: 
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ε>0 is a predefined constant which controls the 
noise tolerance, the constant C>0 determines the trade-
off between the flatness of f and the amount of 
tolerable deviations, which is larger than ε. 

Through introducing a Lagrange function, the 
optimization problem (4) and (5) can be solved in their 
dual formulation, which is expressed as follows: 

maximize 
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The optimal value of iα  , *
iα  can be obtained by 

solving the dual problem (6), (7), accordingly, the ω 
can be described by: 
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and the value of b can be computed according to 
the Karush-Kuhn-Tucker (KKT) conditions. Equation 
(9) is so-called support vector machines regression 
expansion.  

It can be seen clearly from Eq. (9) that we only 
need the dot product of input data instead of 
computing the value of ω and ( )xφ . We introduce 
kernel instead of nonlinear mapping, i.e. 

' '( , ) ( ), ( )K x x x xφ φ=< > then Eq. (9) is rewritten 
as follows:  
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where kernel K(x, x’) are arbitrary symmetric 
functions, which satisfy the Mercer condition. 

4. Modeling Processing 
Since the dimension of hydrology elements could be 
18 yet only concerns the attributes of ocean 
temperature, more than 70 concerns the ocean 
temperature, salinity and two velocities of flow 
(vertical and horizontal), the Rough Set Theory was 
applied to remove the redundant attributes.  

The problem of the purse seine catch prediction 
may be thought as a multistage process as shown in 
Fig. 1. 

Preprocessing is to process the data before 
training, including data rectifying, filling up missing 
data, data alignment and so on. 

Attribute reduction removes the redundant 
attributes by rough set. 

Organizing training data set should be 
corresponding to different situations in the domain of 
fisheries, basically four types of situations:  La Nina 
year, El Nino year, Strong El Nino year and Normal 
year. 

Regression is the modeling of the WCPO 
katsuwonus pelamis purse seine catch by ε-SVR to get 
the prediction model, meanwhile testifying the model 
and feedback to the ε-SVR method to adjust 
parameters and kernel function to get the optimized 
result. 

4.1. Data sources and data formats  
Because the development of WCPO Tuna fisheries is 
steady-going during the years from 1984 to 2003, 
there are no dramatic movements in the scope of catch 
and the amount of catch. This paper adopts the data 
from 1995 to 2000 as training data and the data of the 
first half of 2001 as prediction data.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1: The stages comprising the regression problem. 
 

The Catch & Effort (C&E) data of WCPO purse 
seine tuna catch was provided by South Pacific Ocean 
Forum Fisheries Committee (FFC) from January 1990 
to July 2001. A part of the WCPO hydrology 
temperature element data was downloaded from 
IRI/LDEO Climate Data Library 
(http://iridl.ldeo.columbia.edu, data from 1980 to now) 
and was recomposed to restore into an SQL database. 
Another part of data was computed as the difference in 
temperature per meter between two depths, based on 
the original hydrology data under the suggestion of 
domain experts. Table 1, Table 2 and Table 3 below 
show the data formats in detail. 

4.2. Preprocessing 
As the spatial grid area of Katsuwonus Pelamis Purse 
Seine Catch is 5°×5°, the grid area of training data 
should be 5°×5° also. But the spatial grid area types of 
hydrology temperature elements are 1°×1° and 
1.875°×1.875°, the data must be transformed to fit into 
the 5°×5° grid uniformly. We adopted arithmetic 
average method to preprocess there data, arithmetic 
average function: 

T（m，n） = 
N

jiT∑ ),(
 

(m-2.5≤ i≤m+2.5, n-2.5≤ j≤ n+2.5)          (11) 

where T(m, n) is the average attribute value(SST, 
SSTA or others) in the 5°area which takes point (m, 
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n) as center (m is longitude, n is latitude). T(i, j) is the 
attribute values in the  5°area. N is the sum of 
attribute number.  

 
 

Attribute Name Spatial grid area
Effort (Purse Seine Net Number) Type A* 

Katsuwonus Pelamis Purse Seine Catch Type A 
Table 1: Catch & Effort (C&E) Data provided by South 

Pacific Ocean Forum Fisheries Committee (FFC) 
 

Difference in temperature per meter 
between two depths 

Spatial grid area

12.5m depth and ocean surface Type B 
37.5m depth and 12.5m depth Type B 
62.5m depth and 37.5m depth Type B* 
87.5m depth and 62.5m depth Type B 
137.5m depth and 87.5m depth Type B 
187.5m depth and 137.5m depth Type B 
237.5m depth and 187.5m depth Type B 
287.5m depth and 237.5m depth Type B 

Table 2: Hydrology temperature element data computed 
under the suggestion of domain experts 

 
Attribute Name Spatial grid area 

Sea Surface Temperature(SST) Type C* 
Sea surface temperature anomaly 

(SSTA) 
Type C 

Ocean Temperature of 12.5m depth Type B* 
Ocean Temperature of 37.5m depth Type B 
Ocean Temperature of 62.5m depth Type B 
Ocean Temperature of 87.5m depth Type B 

Ocean Temperature of 137.5m depth Type B 
Ocean Temperature of 187.5m depth Type B 
Ocean Temperature of 237.5m depth Type B 
Ocean Temperature of 287.5m depth Type B 

Table 3: Hydrology temperature element data downloaded 
from IRI/LDEO Climate Data Library 

 
*(Type A* is    5°×5°, Type B* is 1.875°×1.875°, Type C* is 
1°×1°) 

4.3. Attribute reduction 
Due to the complex operation resulting from a large 
amount of data, we picked the hydrology temperature 
element data of year 2001 to be tested to find out the 
key attributes and removed the redundant attributes. 
The result is shown in Table 4.  

4.4. Modeling by  ε-SVR 
The training data sets were picked and organized from 
hydrology temperature element data and Catch & 
Effort database from Jan 1995 to Jun 2000 which  

 
 

Sea Surface 
Temperature(SST) 

Ocean Temperature of 187.5m 
depth 

Sea surface temperature 
anomaly (SSTA) 

Ocean Temperature of 237.5m 
depth 

Ocean Temperature of 
12.5m depth 

Ocean Temperature of 287.5m 
depth 

Ocean Temperature of 
62.5m depth 

Difference in temperature per 
meter between 62.5m depth and 

37.5m depth 
Ocean Temperature of 

87.5m depth 
Difference in temperature per 

meter between 137.5m depth and 
87.5m depth 

Ocean Temperature of 
137.5m depth 

Difference in temperature per 
meter between 287.5m depth and 

237.5m depth 
Table 4:  Key attributes of hydrology temperature elements 

found by discernibility matrix. 
 

yielded 2867 data in total. There are 13 attributes in it 
including 12 hydrology temperature elements and 1 
effort element. The predict data sets were organized as 
151 data from the first half of 2001.  

The conventional multiple regression analysis, ε-
SVR method with 19 attributes and the Rough ε-SVR 
method with 13 attributes were applied to the data sets. 
In order to evaluate the accuracy of the three methods, 
we introduced the R2, the goodness of fit indicator. R2  
is a number between 0 and 1，the closer it gets to 1 
the better goodness of fit is indicated.  The function of 
R2 is: 
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∑
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where      SSR = ∑ − )'( YY 2    ；            (13) 

  SSE = ∑ − )'( YY 2 ；             (14) 
SST = SSR + SSE 。                 (15) 

 
SSR is regression sum of square; SSE is sum of 

square of residues; SST is total sum of square; Y is the 

actual catch; Y’ is predicted catch;Y  is the average 
value of data set Y. 

The goodness of fit of the three approaches was 
measured, and the results are given in Table 5 
indicating a better output for Rough ε-SVR. The 
Rough ε-SVR can predict the data more precisely with 
less attributes. All redundant attributes have been 
removed effectively and the result is desirable. 

 
 



Method Attributes involved R2 
Multiple regression 

analysis 
19 0.51 

ε-SVR 19 0.8149
Rough ε-SVR 13 0.8261

Table 5: Goodness of fit: Rough ε-SVR method vs. multiple 
regression analysis and conventional ε-SVR method. 

 
The prediction curves are shown in Fig. 2, 3 and 4 

below.  
 

Fig. 2 Actual catch of the first half of 2001 
 

Fig. 3 Prediction curve by conventional ε-SVR method with 
19 attributes 

 

Fig. 4 Prediction curve by Rough ε-SVR method with 13 
attributes 

4.5. Kernel and parameter 
selection 

There are a great number of factors that influence the 
regression effect. To different kernel functions the 
goodness of fit is shown in Table 6. The results of four 
classifiers with different kernel function are shown: 
linear kernel (LK), a polynomial kernel (PK), 
Gaussian radial basis function kernel (RBF) and 
sigmoid kernel (SK).      

 
 

SVM Kernel LK PK RBF SK 
Parameter NO d=2 σ=0.001 ν=0.001

Goodness of 
fit 

0.7584 0.8261 0.7520 0.2562 

Table 6: The influence of kernel function 
 
The experimental results show that the goodness 

of fit is the highest with polynomial kernel (d=2), 
where d is the rank of polynomial. Namely 

     

 K(xi,xj) = (γxi
Txj + r)2            (16) 

The choice of γ and C appeared not having too 
much inference on the results as they got a difference 
no more than 0.01. 

5. Conclusions 
As a result of this research activity, the integration of 
Rough Set Theory (RST) and Support Vector 
Regression (SVR) can predict the purse seine catch of 
Katsuwonus Pelamis satisfactorily. It exhibits 
desirable goodness of fit. It represents a more precise 
result with fewer attributes than the method with the 
redundant ones.  

However the limitation of the research lies in the 
fact that only 18 hydrology temperature elements were 
used. Our next research is to involve more hydrology 
elements such as salinity, two velocities of flow 
(vertical and horizontal) and Sea Surface Height (SSH) 
etc. 

Another key issue identified in the research is the 
way training data sets are organized and the model 
selection of Support Vector Machine. Our next 
research will also include the experiments on different 
situations such as La Nina year, El Nino year, Strong 
El Nino year and Normal year and select a more 
suitable model for them in order to reach a better 
prediction result after training. 
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