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Abstract 
The chaotic behavior of groundwater depth time series 
is investigated using correlation dimension method and 
the CAO method based on the reconstruction of 
phase-space. A groundwater depth time series, each 
five days series of 25 years (with a total of 1793 values) 
observed in Hetao irrigation district of Yellow River 
basin, China, is studied. Results show that the chaotic 
character of groundwater level may exist under the 
natural condition, chaotic analysis on groundwater 
depth time series offer theoretical basis and gist for 
groundwater depth forecasting.   
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1. Introduction 
The tremendous spatial and temporal variability of 
hydrological processes has been believed, recently, to 
be due to the influence of a large number of variables. 
Consequently, the majority of the previous 
investigations on modeling hydrological processes 
have essentially employed the concept of a stochastic 
process. However, recent studies have indicated that 
even simple deterministic systems, influenced by a few 
nonlinear interdependent variables, might give rise to 
very complicated structures (i.e. deterministic chaos). 
Therefore, it is now believed that the dynamic 
structures of the seemingly complex hydrological 
processes, such as rainfall and runoff, might be better 
understood using nonlinear deterministic chaotic 
models than the stochastic ones. 

The investigation of the existence of chaos in 
hydrological processes has been of much interest lately . 
The outcomes of the investigations are very 
encouraging as they provided evidence regarding the 
existence of low-dimensional chaos implying the 
possibility of accurate short-term predictions. 

The science of chaos is a burgeoning field, and the 
available methods to investigate the existence of chaos 

in time series are still in a state of infancy. However, 
the considerable attention that the theory has received 
in almost all fields of natural and physical sciences has 
motivated improvements in existing methods for the 
diagnosis of chaos and the proposal of new ones. The 
methods available thus far are the correlation 
dimension method (Grassberger, 1983)[1], the 
nonlinear prediction method (Farmer, 1987)[2] 
including deterministic versus stochastic diagram 
(Casdagli, 1991)[3], the Lyapunov exponent method 
(Wolf, 1985)[4], the surrogate data method (Theiler, 
1992)[5], and the linear and nonlinear redundancies 
(Palus, 1995)[6]. Among these the correlation 
dimension method has been the most widely used one 
for the investigation of deterministic chaos in 
hydrological phenomena. 

It is relevant to note that the application of chaos 
identification methods, particularly the correlation 
dimension method, to hydrological time series and the 
reported results have very often been questioned 
because of the fundamental assumptions with which 
the methods have been developed, that is, that the time 
series is infinite and noise-free. Important issues, in the 
application of chaos identification methods to 
hydrological data, for example, data size, noise, delay 
time, etc., and the validity of chaos theory in hydrology 
have been discussed in detail by Sivakumar(2000)[7]. 
At the same time, the studies by Sivakumar reveals that 
we should employed more than one method in the 
investigation of the existence of chaos in hydrological 
processes and to verify or confirm the results. Thus,  
In this thesis, we identify the existence of chaos in the 
groundwater depth time series in Hetao irrigation 
district of Yellow River basin, from 1981 to 2005 
(Figure 1) by correlation dimension method and CAO 
method. 

2. Correlation dimension method 

For a scalar time series tx , where Nt ,2,1 L= , the 
phase space can be reconstructed using the method of 
delays(Takens,1980)[8]. The basic idea in the method 



of delays is that the evolution of any single variable of 
a system is determined by the other variables with 
which it interacts. Information about the relevant 
variables is thus implicityly contained in the history of 
any single variable. On the basis of this an “equivalent” 
phase space can be reconstructed by assigning an 
element of the time series tx  and its successive delay 
as coordinates of a new vector time series  

),,,,( )1(2 τττ −+++= mjjjjj XXXXY L   (1) 

Where tmNj Δ−−= /)1(,,2,1 τL , m is the 
dimension of the vector jY ,also called the embedding 
dimension, and τ is a delay time taken to be some 
suitable multiple of the sampling time tΔ . 
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Fig. 1: Groundwater depth of Hetao irrigation distinct in 
Yellow River basin of China. 
 

The goal of determining the dimension of an 
attractor is that the dimensionality of an attractor 
furnishes information on the number of dominant 
variables present in the evolution of the corresponding 
dynamical system. Dimension analysis will also reveal 
the extent to which the variations in the time series are 
concentrated on a subset of the space of all possible 
variations. The central idea behind the application of 
the dimension approach is that systems whose 
dynamics are governed by stochastic processes are 
thought to have an infinite value for the dimension. A 
finite, noninteger value of the dimension is considered 
to be an an indication of the presence of chaos. 
   Correlation dimension is a measure of the extent to 
which the presence of a data point affects the position 
of the other points lying on the attractor. The 
correlation dimension method uses the correlation 
integral for distinguishing between chaotic and 
stochastic behaviors. The concept of the correlation 
integral is that an irregular-looking process arising 
from deterministic dynamics will have a limited 
number of degrees of freedom equal to the smallest 
number of first-order differential equations that capture 
the most important features of the dynamics. Thus, 
when one constructs phase spaces of increasing 
dimension for an infinite data set, a point will be 
reached where the dimension equals the number of 

degrees of freedom and beyond which increasing the 
dimension of the representation will not have any 
significant effect on the correlation dimension. 

According to the embedding theorem of 
Takens[1980][8], to characterize a dynamic system 
with an attractor dimension d , an 

)12( += dm -dimensional phase space is required. 
However, Abarbanel et al.[1990][9] suggested that 

dm > would be sufficient. For an m -dimensional 
phase space the correlation function )(rC is given by 
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Where H is the Heaviside step function, with 
1)( =uH for 0>u , and 0)( =uH for 

0≤u ,where ji YYru −−= , N is the number of 

point on the reconstructed attractor, r is the radius of 
the sphere centered on iY or jY . 

If the time series is characterized by an attractor, 
then for positive values of r the correlation function 

)(rC is related to the radius r by the following 
relation: 
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where α is a constant; and v is the correlation 
exponent or the slope of the )(ln rC versus rln plot 
is given by: 
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The slope is generally estimated by a least squares 
fit of a straight line over a certain range of r , called 
the scaling region. For a finite data set, such as the 
precipitation data series, it is clear that there is a 
separation r below which there are no pairs of point; 
that is, it is “depopulated.” At the other extreme, when 
the value of r exceeds the set diameter, the correlation 
function increases no further; that is “saturated.” 
Therefore , for a finite data set, the region sandwiched 
between the depopulation region and the saturation 
region is considered as the scaling region. A region is 
to estimate the local slope given by 

][ln/)]([ln rdrCd .] 
To observe whether chaos exist, the correlation 

exponent(or local slope) values are plotted against the 
value of the correlation exponent is finite, low, and 
noninteger, the system is considered to exhibit 
low-dimension chaos. The saturation value of the 
correlation exponent is defined as the correlation 
dimension of the attractor. The nearest integer above 



the saturation value provides the minimum number of 
phase spaces or variables necessary to model the 
dynamics of the attractor. On the contrary, if the 
correlation exponent increases without bound with 
increase in the embedding dimension, the system under 
investigation is considered as stochastic . 

3. CAO method[10] 
Cao think that the problem of the false neighbor 
method[11] is how to choose the threshold value, 
which is often used to determine the embedding 
dimension. Different time series data may have 
different threshold values. These imply that it is very 
difficult and even impossible to give an appropriate and 
reasonable threshold value which is independent of the 
dimension d and each trajectory’s point, as well as the 
considered time series data. 

To avoid the problem, Cao method instead define 
the following quantity 
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)(mE is dependent only on the dimension m and the 
lag τ . To investigate its variation from m to 1+m , 
we define 

)(/)1()(1 mEmEmE +=            (6) 
Cao method found that )(1 mE stop changing when 

m is greater than some value 0m if the time series 

comes from an attractor. Then 10 +m is the minimum 
embedding dimension we look for. It is necessary to 
define another quantity which is useful to distinguish 
deterministic signals from stochastic signals. Let  
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For time series data from a random set of numbers, 
)(1 mE , in principle, will never attain a saturation 

value as m increases. But in practical computations, it 
is difficult to resolve whether the )(1 mE  is slowly 
increasing or has stopped changing if m is sufficiently 
large. In fact, since available observed data samples are 
limited, it may happen that )(1 mE  stops changing at 
some m although the time series is random. To solve 
this problem, Cao method consider the quantity 

)(2 mE . For random data, since the future values are 
independent of the past values, )(2 mE will be equal 
to 1 for any m in this case. However, for deterministic 

data, )(2 mE is certainly for all m ; in other words, 

there must exist some sm' such that 1)(2 ≠mE . 
Cao method recommend calculating both )(1 mE and 

)(2 mE  for determining the minimum embedding 
dimension of a scalar time series, and to distinguish 
deterministic data from random data.  

4. Result and analysis 

)(ln rC versus rln is show in Figure 2. Figure 2 is 
obtained by using formula (2) and (4). From the Figure 
2, the scaling region is existed; herein the groundwater 
series has chaotic character. The slope of the line in 
scaling region is the correlation dimension. The 
relationship between the correlation dimension values 
and the embedding dimension values is shown in 
Figure 3. It can be seen that the correlation dimension 
values increases with the embedding dimension up to a 
certain value and then saturates beyond that value. The 
saturation of the correlation dimension beyond a 
certain embedding dimension value is an indication of 
the existence of deterministic dynamics. The saturated 
correlation dimension is about 3.469( 469.3=v ), and 
the embedding dimension 11=m . The finite and low 
correlation dimension is an indication that the 
groundwater depth series exhibit chaotic behavior. 

We test the groundwater depth time series with 
Cao method and show the results in Figure 4. Very 
clearly the minimum embedding dimension is 11, 
which is the same as the results tested by correlation 
dimension method, furthermore, E2 of the groundwater 
series is always not equal to 1, which indicated that the 
groundwater depth series exhibit chaotic behavior. As a 
comparison, we show the results from random colored 
noise by Cao method in figure 5. Here the E2 values 
approximately equal 1 for any m and have certainly 
no relation to the E1 values. One can see that the Cao 
method can distinguish random time series from 
chaotic time series. 
 
 
 
 
 
 
 
 
 

 
Fig. 2: ln ( )C r versus ln r plot. 
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Fig. 3: Relationship between embedding dimension and 

correlation dimension. 
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Fig. 4: The values E1 and E2 for the groundwater depth time 
series. 
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Fig.5: The values E1 and E2 for the random colored noise. 

5. Conclusions 
An attempt was made in this study to investigate the 
chaotic feature of the groundwater depth time series 
of Hetao irrigation distinct in China. Correlation 
dimension method and Cao method were employed 
to achieve the target. E2 value of the groundwater 
series, which is always not equal to 1, and the finite 
and low correlation dimension of series are an 
indication that the groundwater depth series exhibit 
chaotic behavior. This results provides scientific gist 

for predicting the groundwater depth with chaotic 
approach. 
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