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Abstract 
The batch-to-batch model-based iterative optimal 
control strategy for batch processes is realized based 
on multilayer recurrent fuzzy neural network 
(MRFNN) and chaotic search. MRFNNs are used to 
model batch processes. Modeling and optimization 
problems are mainly solved by chaotic search. Due to 
model-plant mismatches and disturbances, the 
calculated optimal control profile may not be optimal 
when applied to the actual process. Current predictions 
are improved by prediction errors from previous 
batches, and the model errors are gradually reduced 
from batch-to-batch. Furthermore, the control strategy 
is developed for temperature tracking control. The 
effectiveness is verified on simulated batch reactors. 

Keywords: Batch-to-batch control, Iterative learning 
control, Recurrent neural network, Batch process 

1. Introduction 
In contrast to continuous processes, batch processes 
have strong nonlinear behaviors and always operate in 
transient states. A further difficulty in batch process 
control of final product quality is that product quality 
variables usually cannot be measured on-line and can 
only be obtained through laboratory analysis after a 
batch has finished [1]. Therefore, to build an accurate 
model that can provide accurate long term prediction 
is the base for optimal batch process control. To 
construct a mechanistic model for a batch system, 
challenging difficulties occur in determining 
coefficients of the reaction. Once the expression is 
available, the unknown correlated parameters have to 
be fitted by optimization or estimated [2]. 

To overcome these difficulties, neural network 
models based upon process operational data have been 
widely proposed as an alternative to the traditional 
mathematical models. To deal with temporal problems 
of dynamic systems, recurrent networks are commonly 

used. With feedbacks to the network input layer or 
hidden layers, recurrent neural network (RNN) can 
capture the nonlinearity and time-variance of dynamic 
system well. Mixed order locally recurrent neural 
network, global recurrent neural network and 
aggregated recurrent neural network are applied to the 
modeling and control of batch polymerization process 
by Zhang etc [1], [3], [4]. Interest in recurrent fuzzy 
neural networks (RFNNs) has been growing in recent 
years. RFNNs combined with T-S fuzzy model [5] and 
compensation-based fuzzy model [6] were proposed 
for dynamic system identification. In this paper, a 
multilayer recurrent neural network (MRFNN) with 
local feedbacks in both membership layer and rule 
layer is used to model batch reactors for providing 
long-term predictions. 

Due to model-plant mismatches and unknown 
disturbances, the calculated optimal control profile 
may not be optimal when applied to the actual process. 
Because the batch processes are repetitive, the general 
idea of batch-to-batch or run-to-run optimization is 
using results from previous batches to find iteratively 
the optimal operating conditions, while performing the 
smallest number of suboptimal runs and preferably no 
unacceptable ones [7]. Various strategies have been 
proposed for batch-to-batch optimization. Recently, 
iterative learning control (ILC) has been introduced 
into batch process control. Lee and his co-workers 
proposed a model predictive control for batch 
processes (BMPC) approach with quadratic criterion 
for temperature control in batch processes [8]. Xiong 
and co-workers adopted the idea of ILC, proposed a 
batch-to-batch iterative optimal control strategy based 
on recurrent neural network models to improve 
product quality from batch-to-batch [7], [9]. The 
model predictions are iteratively modified by using 
errors of the network model during previous batch 
runs, and then updated control policy is calculated by 
SQP for each batch using the modified model 
predictions. 

In this paper, the batch-to-batch iterative optimal 
control strategy for product quality control proposed 
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by Xiong is realized based on multilayer recurrent 
fuzzy neural network (MRFNN) and optimization is 
performed by chaotic search algorithm. And then the 
control strategy for temperature control of batch 
processes is developed. In section 2, MRFNN 
architecture is presented for modeling batch processes. 
In section 3, chaotic search algorithm is presented for 
MRFNN parameters learning and updating control 
policy after each batch run. Section 4 introduces the 
control strategy for product quality control and the 
developed strategy for temperature control of batch 
processes. Applications of control strategies to 
simulated batch reactors are given in Section 5. In 
Section 6, conclusion is drawn. 

2. MRFNN architecture 
The jth fuzzy if-then rule with n  inputs of T-S model 
is as follows: 

Rule-j: IF )(1 tx  is jA1  and ... and )(txn  is njA  

Then )()()1( 110 txatxaaty n
j

n
jjj +++=+ L  

for Rj ,,1L= , where Rule-j denotes the jth fuzzy rule, 
T

n txtxtx )](,),([)( 1 L=  is the input vector the to 

model at time t , )1( +ty j  is the output of the jth rule, 

njj AA ,,1 L  are the fuzzy sets, j
n

j aa ,,0 L  are the 
consequent coefficients of Rule-j. 

The proposed multilayer recurrent neural network 
has six layers. The MRFNN combines T-S fuzzy 
model with local feedbacks in both membership layer 
and rule layer. The structure is shown in Fig.1. 

The Layer1 is the input layer. The inputs are 
received and transmitted to the next layer directly. 

The Layer2 is the membership layer with a local 
recurrent structure. The output of this layer node is fed 
back to the membership layer node. The Gaussian-
type membership function can be written as follows: 
 

 
Fig.1: Structure of the proposed MRFNN. 
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where ijm  and ijσ  are the mean and variance of the 
Gaussian membership function of the jth term of the 
ith input ix , respectively; ijθ  is the feedback weight. 
Therefore, the node output of this layer is the function 
of the current input, the node parameters and the 
previous node output. 

The Layer3 is the rule layer with a local recurrent 
structure. There are R  rules in this layer. A fuzzy 
region jA  is formed by “fuzzy-and” operation: 

j

n

i
iAA stxtx

ijj
⋅= ∏

=1
))(())(( μμ                 (2) 

The above equation provides the degree to which 
a particular input vector )(tx  belongs to the fuzzy 
region jA . For the internal variable js , the following 
Sigmoid function is used: 

))))1((exp(1/(1 jAj txs
j

ϕμ ⋅−−+=          (3) 

where jϕ  is the feedback weight. 
The Layer4 is the normalization layer. 
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The Layer5 is the consequent layer. The node 
output of this layer is the output of each rule. 
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The Layer6 is the output layer. 
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Therefore, modeling with MRFNN is the problem 
of optimizing premise parameters { }jijijijm ϕθσ ,,,  and 

consequent coefficients { }jia . 
In this study, MRFNN is used to model the 

nonlinear relationship between the input 
T

kkk NuuU )]1(,),0([ −= L and the output 
T

kkk NyyY )](),1([ L= , where k  is the batch index, u  
is the input (manipulated) variable for the output 
variable, y  is the output variable of batch processes 
such as product quality, The batch run length ft  is 
fixed and divided into N  intervals (i.e. htN f /= , h  
is the sampling time). After training, the current or 
previous predictions of MRFNN, in stead of the batch 
process output, are used as inputs of MRFNN for 
predicting next output. Therefore, predictions from 
MRFNN are multi-step ahead / long-term predictions. 



3. Chaotic search 
A chaotic motion can go non-repeatedly through every 
state in a certain domain. Chaos optimization 
algorithm was introduced by Li and Jiang [10] by 
incorporating chaotic dynamics into the optimized 
variables and then the optimum can be found based on 
chaotic search (CS). Because CS is simple and high 
effective, in recent years, it has drawn more and more 
attention. In this paper, modified CS is used not only 
as an optimization algorithm for optimization problem 
but also used for premise parameters learning of 
MRFNN modeling. The general idea of modified CS 
is the same. Here, we just describe the parameter 
learning algorithm, because it combines CS together 
with least square estimation (LSE), where CS is for 
optimization of premise parameters while LSE is for 
updating consequent coefficients for fast convergence. 

For training MRFNN, the object is to find an 
appropriate set of parameters for minimum root mean 
square error (RMSE) between the desired outputs and 
the outputs of MRFNN. When the premise parameters 
are defined, the consequent parameters can be defined 
by LSE. Therefore, the object of parameter learning 
can be written as: 

),(min azf                             (7) 
where f denotes the RMSE between the desired 
outputs and the outputs of MRFNN; z  represents for 
optimized premise parameters, maxmin iii zzz ≤≤ , 

Rni )13(,,1 += L ; a  represents for consequent 
coefficients. 

In this paper, the modified CS is based on the 
well-known Logistic map: 

)1(1 ttt vvv −=+ μ                        (8) 
where μ  is a control parameter, v is the chaotic 
variable represents for premise parameters, )1,0(∈v . 
The system represented by Eq. (8) is in a chaotic state 
when 4=μ . 

The parameter learning process is described as 
follows: 

Step1. Initialization. Set iteration counter 0=t ; 
initialize number 1M , 2M  of chaotic search and 

initial value of chaos variables 0v  (cannot be the fixed 
points of Logistic map i.e. 0.25, 0.5, 0.75); the best 
RMSE *f  is initialized as a big number; set 
disturbing coefficient 05.01 =α  and decreasing 
coefficient 9999.0=β . 

Step2. Chaotic searching. 
Step2.1. Iterative searching. Set 1+= tt , calculate 

new chaotic variables tv  by Eq. (8). 
Step2.2. Variable mapping. Map the new chaotic 

variable into the optimized variable by linear mapping: 
)( minmaxmin ii

t
ii

t
i zzvzz −+= . 

Step2.3. Searching for optimum. Based on present 
premise parameters tx , consequent parameters ta  are 
estimated by LSE; and then compute ),( tt azf . If 

*),( fazf tt ≤ , set )(* tzff = , tzz =* , tvv =* , 
taa =* , 05.01 =α , and go back to Step 2.1. Else if 

*f  isn’t changed during 1M  times repeating step2, go 
to Step3. 

Step3. Further searching. Add a disturb to *v  by 
tt vvv 1

*
1)1( αα +−= , 11 βαα = , and go to step2. 

With the search proceeding, the current optimum 
is deemed as approaching the best optimum more and 
more close, 1α  is reduced gradually. This helps 
searching follow different chaotic trajectory, and avoid 
the local optimum. 

Step4. Judging. If *f  isn’t changed during 2M  
times repeating step3, the learning process is 
performed. Else return to Step2 to continuing 
searching. 

4. Methodology 

4.1. Batch-to-batch model-based 
iterative control for product 
quality 

For the product quality control of batch processes, 
only the desired product quality variables at the end of 
a batch )( fd ty  are of interest, quality variables )(tyk  
is got on-line measured or analyzed after the kth batch. 
The batch-to-batch iterative optimization problem for 
product quality control can be formulated as: 

22~min
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Given )(tyi , ),0( ftt∈ , ki ≤ . Where nq IQ ⋅= λ  

and nr IR ⋅= λ  are weighting matrices, f
ke~  is the 

difference between desired product qualities and 
modified predictions of MRFNN model )(~

fk ty , 



][⋅MRFNN  represents the MRFNN model, )(tyk  and 
)(ˆ tyk  are, respectively, the measured and predicted 

values of product quality variables at time t of kth 
batch, t is the discrete batch time, )(ˆ 1 tek−  is the 
average model error of all previous runs at time t, 2α is 

a bias correction parameter and 10 2 ≤<α , lowu  and 
hiu  are the lower and upper bounds of the input 

trajectory, lowy  and hiy  are the lower and upper 
bounds of the final product qualities. 

Here, the above optimization problem is solved by 
using chaotic search as described in Section 3. Xiong 
has proven that if Ineq. (18) holds, then 0lim 1 =Δ +∞→ kk

U . 

Therefore, we add Ineq. (18) to be another constrain of 
the optimization problem to make sure no worse 
solutions will be produced. 

2
1 )(~)(~

Qfkdfkd tyytyy −≤− +             (18) 

The control strategy is shown in Fig.2. It can be 
summarized as follows [7]: 

Step1. At the current kth batch, the input kU  is 
implemented into the batch process and the outputs 

)(tyk  are obtained by measurement or analysis. 
Step2. Compare )(tyk  with the model prediction 
)(ˆ tyk  and calculate the model prediction error )(ˆ tek  

using Eq. (15) and store them. Using )(ˆ tek  and those 
prediction errors stored in all previous runs to 
calculation the average model error )(ˆ 1 tek−  using Eq. 
(14). 

Step3. Modify the MRFNN model predictions for 
the next batch and obtain )(~

1 tyk+  from Eq. (13). Based 
on the modified predictions )(~

1 fk ty + , the optimization 
problem specified by Eqs. (9)-(18) is solved and an 
updated open-loop input 1+kU  for the (k+1)th batch is 
calculated. 

Step4. Increase the batch index k by 1 and go to 
Step1. 
 

 
Fig. 2: Batch-to-Batch iterative optimal control diagram. 

 

4.2. Batch-to-batch model-based 
iterative control for product 
quality 

Based on the strategy described in 4.1 for product 
quality control of batch processes, a batch-to-batch 
model-based iterative control of temperature tracking 
for batch processes is proposed. For quality control, 
the main interest is on the final product quality and the 
reference trajectory is usually difficult to set. But for 
temperature control, the desired temperature trajectory 
is usually available. 

Eqs. (9)-(10) and (17)-(18) are replaced by Eqs. 
(19)-(22). Then for every time t, the optimal input can 
be calculated by solving optimization problem 
specified by Eqs. (19)-(21) and (11)-(16). The control 
strategy is almost the same as described in Section 4.1 
except that in Step (3), the optimization problem is 
solved based on the modified predictions )(~

1 tyk+  for 
every time t. 

22
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s.t. )(~)()(~ tytyte kdk −=                   (20) 
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k
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5. Simulation 

5.1. Production quality control of a 
batch reactor 

The typical batch reactor is taken from [9,11]. The 

reaction scheme is CBA
kk 21
→→ , the equations 

describing the reactor are: 
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           (23) 

where 1x  and 2x  represent the dimensionless 
concentrations of A and B, T is the temperature of the 
reactor. For simplicity, T  is scaled to dimensionless 
value as )/()( minmaxmin TTTTT −−= , the values of 

minT and maxT  are 298K and 398K respectively. The 
initial conditions are 1)0(1 =x  and 1)0(2 =x , and the 
constraint on the control dTu =  is 10 ≤≤ dT . The 
performance index is to maximize the concentration of 
B )(2 ftx at the end of batch. The inputs and output of 
MRFNN model are TtxtT )]( )([ 2 and )1(2 +tx  
respectively. 



11 batches of data are obtained from the 
mechanistic model (23) with T  ranging from minT  to 

maxT . There are 100 sets data in every batch with 
sampling time 0.01. Normally distributed random 
noise with zeros means with covariance 0.0022 was 
added to corrupt 2x . Among these data, 10 batches 
were used for training and the remaining batch was 
used for testing. Set 2021 == MM  and 5 rules in 
MRFNN, after learning, the modeling RMSE is 
0.0011. Then the built MRFNN model is used for 
predicting tested by the unseen testing batch. The 
predicting RMSE is 0.0073, and the long-range 
prediction of 2x  from MRFNN on the unseen testing 
data is shown in Fig. 3. The modeling and testing 
results show that the built MRFNN model can fit 
training data well with good prediction ability. 

The batch length is divided into 10=N  equal 
stages. Set 43.0)( =fd ty , 1.02 =α , 2000=qλ  and 

10=rλ . Due to the MRFNN model-plant mismatches, 
the final product concentration optimized based on 
MRFNN is 0.4208. The calculated control policy is 
used as the first run of batch-to-batch iterative 
optimization based on MRFNN. After batch-to-batch 
iterative optimization for 7 batch runs, the product 
concentration is improved to 0.4267. The convergence 
of temperature trajectory is shown in Fig.4 and the 
tracking error is shown in Fig.5. 
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Fig.3: MRFNN predicting performance on product quality. 
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Fig.4: Temperature profiles for product quality control. 
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Fig.5: Tracking error for product quality control. 

 

5.2. Production quality control of a 
batch reactor 

A batch reactor is taken from [8] where a exothermic 
reaction BA →  takes place. It is assumed that the 
reactor has a cooling jacket whose temperature is 
directly manipulated. The following equations 
describe the dynamics of the reactor system: 

2/
0

2/
0

)()(

A
RTEA

A
RTE

p
j

p

Cek
dt

dC

Cek
MC

VHTT
MC
UA

dt
dT

−

−

−=

Δ−
+−−=

   (24) 

where, 09.0=
pMC

UA (l/min), 64.1)(
=

Δ−

pMC
VH (Kl/mol), 

19
0 1053.2 ×=k (l/mol·min), 13550=RE (°K), 

25)0( == ITT ( ), ℃ 9.0)0( == AICC (mol/l). 
12 batches of data are obtained from the 

mechanistic model (23) with jT  ranging from 15 to 40. 
There are 80 sets data in every batch with sampling 
time is 1. Normally distributed random noise with 
zeros means with covariance 0.12 was added to corrupt 
T . Among these data, 10 batches were used for 
training and the remaining 2 batches were used for 
testing. The inputs and output of MRFNN model are 

TtTtT )]( )([ j and )1( +tT  respectively. Set 
2021 == MM  and 5 rules in MRFNN, after learning, 

the modeling RMSE is 0.2918. Then the built 
MRFNN model is used for predicting tested by the 
unseen testing batches, and the predicting RMSE is 
0.6350. 

Set 25.02 =α , 1=qλ  and 1.0=rλ . Due to the 
model-plant mismatches, the optimal input jT  
computed based on MRFNN model applied to the 
batch reactor leads big errors, see the first run shown 
in Fig.6. After iterative optimization for 7 runs, the 



actual temperature T  can track the reference 
trajectory well although small tracking errors still exist. 
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Fig.6: Results of iterative temperature control. 

 

6. Conclusions 
The batch-to-batch control model-based iterative 
optimal control strategy for product quality control of 
batch processes is realized based on multilayer 
recurrent fuzzy neural network (MRFNN) and chaotic 
search. MRFNN are used to model batch processes for 
long-range predictions. With local feedback 
connections in both membership layer and rule layer, 
MRFNN can solve the temporal problem of batch 
processes. The premise parameters of MRFNN are 
learned by modified chaotic search (CS) algorithm, 
while consequent coefficients are updated by least 
square estimation (LSE) for fast convergence. To find 
the optimal control profile is the optimization problem, 
which is solved by CS. Due to model-plant 
mismatches and unmeasured disturbances, the 
calculated optimal control profile may not be optimal 
when applied to the actual process. Current predictions 
are improved by prediction errors from previous 
batches, and the model errors are gradually reduced 
from batch-to-batch. This control strategy is then 
extended to address the temperature tracking control 
problem of batch processes. The effectiveness is 
verified on simulated batch reactors. 
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