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Abstract 
The Computer Generated Force (CGF) has decision 
ability by self-learning mechanism, which is an 
important research field in applying machine learning 
technology to military simulation. On the basis of 
modeling architecture of Agent and Learning 
Classifier Systems (LCSs) technologies, a learning 
behavioral model framework based on Genetic 
Algorithms (GA) of CGF is proposed. It discusses 
elaborately the learning process of this model, in 
which memory function is first introduced to 
accelerate. Also, a visible validation system is 
designed. The simulated results indicate that the 
learning model is available and feasible. 
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1. Introduction 
Computer generated forces (CGF) are automated or 
semi-automated entities in a battlefield simulation that 
are generated and controlled by a computer system, 
perhaps assisted by a human operator, rather than by 
human participants in a simulator[1]. Recently, 
interest in agent-based CGF modeling and simulation 
has been on increase. According to the definition of 
CGF and Agent, a simulation entity should be 
autonomous and intelligent, which can adapt itself to 
the time-varying state of the environment. How does 
the simulation entity has such an ability yet? It should 
be able to learn in a CGF model. However, this kind of 
research hasn’t been studied extensively regardless of 
its importance for two reasons. One is that the learning 
process is too complex to be modeled effectively. The 
other is that some researchers have objections to 
simulation entities possessing learning ability [1]. 

But, most of researchers consider that learning 
ability of intelligent entities is a prerequisite for 
implementing a behavior model with high fidelity. In 
an effort to find the best learning model, they pay their 
attentions to machine learning field. Approaches to it 
can be classified mainly into four categories: rule-
based, paradigm-based, networks-based and GAs-
based. Among the different categories of machine 

learning algorithms, GA-based CLSs method has a 
great deal of potential in CGF models.  

The LCSs formalism was introduced by John 
Holland in 1976 and the first implementation of LCSs 
was presented by John Holland and Judith Reitman in 
1978. Robert E. Smith employed the LCSs to acquire 
rules for novel fighter combat maneuvers through 
simulation demonstrating good success [2]. In this 
paper, we apply the GA-based LCSs technique to the 
CGF learning behavior model, where memory 
function is first brought forward to accelerate.  

The paper is organized as follows. Section II 
presents an overview of the associated concepts such 
as agent-based modeling, GAs and CLSs. An 
architecture of CGF based on agent is built in Section 
III, where we give a detailed specification of learning 
behavioral model on the basis of GAs. Section IV 
proposes a visible experimental framework and some 
simulation results obtained. Finally, Section V 
concludes the paper with some recommendations for 
future work.  

2. Key ideas and definitions 

2.1. Agent-Based Modeling  
Agents are model constructs designed to operate 
independently or semi-independently. A key element 
of agent design is the ability of agents to interact in a 
cooperative or competitive fashion. There are however 
many definitions and many different types of agents. 
In a word, agent is an intelligent entity that has certain 
independent ability. Structures of agent-based model 
range within three fundamental categories [3]: 
deliberative agent, reactive agent and hybrid agent. In 
this paper, we place considerable attention on the 
second type and apply the agent-based behavior 
modeling technique to CGF behavior modeling. 

A representative reactive agent contains four 
components: a set of detectors, a set of effectors, a set 
of stimulus-response rules, and a performance system. 
The agent perceives its environment through its 
detectors. An event in the environment causes the 
detectors to generate a message that are routed to all 
the rules. The rules in turn may or may not generate a 



message. The rule generated messages constitute 
instructions to the effectors to take a specific action in 
response to the event in the environment. 

2.2. Genetic Algorithms 
Genetic algorithms (GAs) are stochastic adaptive 
algorithms whose search method is based on 
simulation of natural genetic inheritance and 
Darwinian striving for survival. Mathematical 
arguments show that GAs bring substantial 
computational leverage to search problems, without 
requiring the mathematical characteristics often 
necessary for traditional optimization schemes. It has a 
great deal of potential in scientific and engineering 
optimization or search problems [4].  

A simple genetic algorithm (SGA) can be defined 
by  

〉ΠΨΓΦ〈= TMPECGA ,,,,,,,,:: 0  
where C  is chromosome encoding, E is fitness 
evaluation, 0P  is initial population, M  is population 
size, Φ  is selection operator, Γ  is crossover operator, 
Ψ  is mutation operator, Π  is replacement operator 
and T  is termination conditions. 

An important issue in designing a SGA is the 
procedure used to control the genetic operations. The 
generational procedure is shown below: 

SGA( ) 
{  initialize population 0P ; 
    0PP = ; 
    repeat  
{   )21( PfrompandpparentstwoΦ ; 
        )2,1( ppoffspring Γ= ; 
        )(offspringΨ ; 
        ),( offspringPΠ ; 
    } until ( T ); 
} 
By giving more chances for the better elements to 

have offspring in the next generation, the GA 
facilitates an evolutionary process in which elements 
in a population progressively improve over time. 

2.3. Learning classifier systems 
GAs-based learning classifier systems (LCSs) belong 
to machine learning techniques. In fact, they are rule-
found systems, which learn and acquire new rules by 
interacting with an environment. The rules are usually 
in the traditional production system form of “IF state 
THEN action”. And one classifier is equivalent to a 
rule. 

LCSs are composed of four components[5]: (1) a 
classifier list, which is a condition-action rule base that 

represents the current knowledge of the system; (2) the 
performance component, which governs the 
interaction with the environment; (3) the 
reinforcement component (also called credit 
assignment component), which distributes the reward 
received from the environment to the classifiers 
accountable for the rewards obtained; (4) the 
discovery component, which is responsible for 
discovering better rules and improving existing ones. 

LCSs learn by trying to maximize the amount of 
reward which is a feedback from an environment. This 
learning process is shown as Fig. 1. The performance 
component of LCSs interacts with the environment. 
Depending on the consequences of interaction, the 
reinforcement components update the classifier’s 
fitness. In the end of each learning, the discovery 
component selects batter classifiers from the 
classifiers list with probability prosectional to their 
fitnesses, and produce new classifiers by using these 
classifiers to replace worse classifiers. At present, 
LCSs have been quite successfully applied in a wide 
variety of domains [6] (e.g., autonomous robotics, 
knowledge discovery, and computational economics). 

Fig. 1: Learning Classifier Systems. 
 

3. Learning behavior model of CGF 

3.1. Framework of agent-based 
CGF 

According to reactive agent model framework, we 
build an agent-based CGF model shown as Fig. 2. The 
model is simple because it is mainly used to research 
CGF learning ability. 

CGF accomplish the interactive with the 
environment through its detectors and effectors to 
change the state of the environment. Let BA⊗  
denotes update operation of B based on A . The 
transformation process of the environment, form t  
state to 1+t  state, can be described as the following 
equation:  

)()()1( ttt εβε ⊗=+               (1) 

Discovery Component 

Performance Component 

Reinforcement Component 

Condition

Action 
Reward En

vi
ro

nm
en

t 



where )(tε  is the state of the environment perceived 
by CGF though detectors at t , )(tβ  is the action 
executed by CGF though effectors at t . So reward 
α is defined by: 

))()1(()1( ttft εεα −+=+            (2) 
where )()1( tt εε −+  is the transformation of the 
environment. According to the learning algorithm and 
the reward α , the learning model updates rules in the 
rule-base, acquire new better rules and delete worse 
rules. 

 

Fig. 2: Agent-based Framework of CGF. 

3.2. Decision-making Model 

Fig. 3: Decision-making Model. 
 
 

Fig. 3 describes the decision-making model based on 
rules. The decision-making model employs the 
production rule form which is composed of two 
sections: condition section and action section. The rule 
condition and action are strings of characters from the 
ternary alphabet { }#,1,0 . The #  alphabet acts as a 
wildcard allowing generalization. The string #10#011 
is a rule whose front four bits are condition section 
and back three bits is action section. In other words, 

the string #10#011 is a rule that says “IF in state 0100 
OR state 0101 OR state 1100 OR state 1101, THEN 
take action 011”. Decision-making model represents 
the condition as a finite-length string by using encode 
mechanism and transforms string into 
countermeasures by using decode mechanism. 

Memory is the base of intelligence, and an 
intelligent man does not make the same mistake for 
several times. Acting as intelligent simulation entities, 
CGF should have memory ability while learning. 
Therefore, we add memory-base to Decision-making 
model. CGF place wrong rules into memory-base and 
don’t adopt them in the latter learning process. This 
memory function is also accelerate GAs evolution 
because the wrong rules haven’t the chance to be 
activated. 

3.3. Learning Model 
Learning model adopt GAs-based reinforcement, 
whose structure is shown in Fig.4. 

The rule base, which is equivalent to the 
population of GAs, consists of N  condition-action 
rules. Accordingly, one rule is an individual, and N  is 
the population size. A fitness to indicate the 
“usefulness” of the rule can be considered as an 
individual fitness. Based on the reward, individual 
fitness function in Learning model is used to adjust the 
fitness of rules in the rule-base. Learning model then 
selects randomly parent rules from the rule-base with 
probability prosectional to their fitnesses. Offspring 
are produced via mutation and crossover from the 
parents in the usual way and replace the rule whose 
fitness is less in rule-base. 

 

Fig. 4: Learning Model. 

3.4. Learning Process 
The general operational cycle for CGF learning is 
described as follows:  

Step 1: GAs initialize the rule-base;  
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Step 2: Initializations of the simulation system, 
including simulation environment, CGF state and 
simulation result;  

Step 3: The detectors perceive and send the 
current state of the environment to the decision-
making model; 

Step 4: Decision-making model determines the 
rules whose condition sections are adequately matched 
by the current environment state, and builds a match 
set containing the rules that don’t appear in the 
memory-base; 

Step 5: Decision-making model evaluates the 
utility of the action section of the rule in the match set. 
According to the evaluation results, the system selects 
a rule and sent its action section to the effectors to be 
performed. And this rule is saved at the same time;  

Step 6: The effectors perform the indicated action, 
usually altering the state of the environment;  

Step 7: If termination condition of simulation is 
satisfied, it turns to Step 8. On the contrary, it turns to 
Step 3;  

Step 8: According to simulation results, reward 
α is formed. Learning model uses individual fitness 
function and reward α to update the fitness of each 
rule in the rule-base;  

Step 9: The GAs employed selection, crossover 
and mutation operators to generate a new rule-base;  

Step 10: Learning model checks the terminate rule 
of learning process. If it is satisfied, it stops. On the 
contrary, it turns to Step 2.  

On the basis of the above learning cycle, it’s 
obvious that CGF entity perceives the environment 
state and changes the environment though the action 
according to the tactic provided by the decision-
making model at each step in the simulation. However, 
Learning model runs only once at the end of each 
simulation iteration cycle as show in Fig. 5. Here, 
Physical model, which perceives the environment state, 
affects and changes the environment, includes 
dynamics and kinematics model, sensor model and 
weapon model of CGF.  
Fig. 5: Learning Process. 

4. Experimental framework and 
simulation studies 

In order to validate the validity of the model built by 
us, we design a simple visible validation system. The 
system simulates engagement between two tanks. The 
tank that employs the rules produced by the learning 
model is student tank, and the tank that employs the 
rules prescribed beforehand is teacher tank. At the end 
of simulation, the results are used by the learning 
model to produce the next generation of rules. The 
learning process repeats until student tank win 
continuously for three times. 

4.1. Experimental framework 
The settings of the system are described as follows: 

1) Rule: The rule population for each generation 
is generated by a simple GA. Each rule has a fitness 
assigned by the individual fitness function. It is 9 
characters long, with 5 left-hand side and 4 right-hand 
side. The alphabet consists of { }0,1 . The encoding 
rules of simulation environment state and action are 
shown respectively in Table 1 and Table 2, where L  
is the distance between two tanks, maxR  is the 
maximum cannon-shot and minR  is the minimum 
cannon-shot. Let l represent the line connecting 
centroids of two tanks. α  in Table 1 is the angle 
between direction of advance and line l , and β is the 
angle between direction of muzzle and line l . 

 
 

code 0 1 
1st digit maxRL <  maxRL >  

2nd digit minRL <  minRL >  

3rd digit 0≤α  0>α  

4th digit 0<β  0>β  

5th digit 0≠β  0=β  
 

Table 1: Encoding of simulation environment state. 
 

code 0 1 
1st digit stop advance 
2nd digit no fire fire 
3rd digit muzzle turn right muzzle turn left
4th digit tank turn right tank turn left 

Table 2: Encoding of action. 
 

2) GAs: The GA in this system employs 
prosectional selection, single-point crossover, and 
simple mutation. Population size 100=M , crossover 
rate 9.0=cP , mutation rate 05.0=mP . Based on the 
fitness, new rules are arranged in descending order, 
and rules of the parent population are also arranged in 
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descending order. The latter n  rules in the parent 
population are replaced with the first n  new rules, 
where uPMn ×= , uP  is replacement ratio and 

5.0=uP . 
3) Environment Simulation: The visualized 

simulation learning environment is realized by 
VC++6.0. A one-one tank engagement is generated by 
the environment to evaluate the rules in the rule-base.  

4) Decision-making Model: At each time step in 
simulation, the rules whose condition sections are 
completely matched with the current environment 
state are triggered. What’s more, these rules could not 
appear in the memory-base. If more than one rule is 
triggered at the same time, the rule with the highest 
fitness will be activated. But if there is no triggered 
rules, student tank employs the default action. The 
trigger/activation process continues until the 
engagement is terminated, and all activated rules will 
be saved in an activation list. 

5) Individual Fitness Function: The function uses 
the engagement score and the activation list to assign 
fitness for each individual rule, which insures that the 
information from previous generations can be 
inherited to the next generation. 

The function was composed of two steps: 
Step 1: All activated rules are directly assigned 

the score of the latest completed engagement by using 
the following equations: 

nFF ii += −1 ,     if the student tank wins 
2/1 nFF ii −= − ,     if the student tank loses 

where iF  is individual fitness at the end of simulation 
i , 1−iF  is individual fitness at the end of simulation 

1−i , n  is the number that individual is activated in 
the simulation i . 

Step 2: In the selection operation, the fitness of 
the offspring can be evaluated via the following fitness 
function:  

po FF 3/1=  
where oF  is the fitness of the offspring, pF  is the 
fitness of the parent. 

4.2. Experimental Results 
In order to reduce variation, each experiment is 
repeated at least 10 times and the results are the 
average one. Assume the following notations: N  is 
the number of experiment, M  is the population size, 

),,2,1( Ni L∈ , ),,2,1( Mj L∈ , iP  is the population 
at end of the experiment i , ijX  is the individual in iP , 

ijF  is the fitness of ijX . 

Step 1: The same individuals in the each 
population iP  are merged and sum up their fitness. 
After the merge, the population size is possibly 
different, but M  is still the population size to simplify 
the description. 

Step 2: The fitness of the same individual among 
populations is not same for engagement number of 
each experiment is possibly different. In order to 
eliminate this abnormity, individual relative fitness 

ijRF  is calculated as follows:  

∑
=

M

1j
ijijR FFF

ij
＝                            (3) 

Step 3: The same individuals in the N  
populations are merged and sum up their fitness. After 
the merge, N  populations become one population 
whose size is H . Based on the fitness, all individuals 
are arranged in descending order. 

Step 4: The individuals whose relative fitness is 
small are not be applied in the environment. To avoid 
influence the analysis of experimental results, the first 
K  )K( H<  individuals are employed.  

Assume the relative fitness of individual pX  is 

pRF  and environment code is ),,,(
21 lppp xxx L . If 

action section of this individual include W , where W  
is fire or advance, 1if  and 2if  is calculated as follow:  

If 1x =
ip ),,2,1( li L= , 

pRii Fff += 11  

If 0x =
ip ),,2,1( li L= , 

pRii Fff += 22  

After processing all K  individuals, matrix 
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 is acquired. If 21 2 ii ff > , 1=ix . If 

12 2 ii ff > , 0=ix . If 21 2 ii ff ≤  and 12 2 ii ff ≤ , 
#=ix .Where ）（ lxxx ,,, 21 L  is corresponding 

environment code of W . 
In order to simplify the experiment, we only study 

two actions “advance” and “fire”. The move direction 
of tank and the turn direction of muzzle are controlled 
by module, so tank will auto turn to the opponent. The 
simulation experiment runs for ten times. The 
experiment results are analyzed by using method 
presented in the paper. Table 3 and 4 are analysis 
results. Obviously, we get the two rules “010010100” 
and “110001000” that are just employed by teacher 
tank. So, student tank has learned two actions 
“advance” and “fire”. 

 
 
 



relative fitness Environment 
code 1if  2if  

Adoption 
value 

1st digit 0.325319 0.731702 0 

2nd digit 0.826195 0.230825 1 

3rd digit 0 1.05702 0 

4th digit 0 1.05702 0 

5th digit 0.731702 0.325319 1 
Table 3: Environment code of “fire”. 

 
relative fitness Environment 

code 1if  2if  
Adoption 

value 
1st digit 1.15 0.173111 1 
2nd digit 1.15 0.173111 1 
3rd digit 0 1.32311 0 
4th digit 0 1.32311 0 
5th digit 0.173111 1.15 0 

Table 4: Environment code of “advance”. 

5. Conclusions 
A learning behavioral model framework based on GAs 
of CGF is proposed in this paper. The simulation 
results obtained from a visible validation system 
reveals that the model is available and feasible. Our 
contributions can be summarized as follows: GAs-
based CLSs technology is first applied to agent-based 
learning behavioral modeling. This will contribute to 
the performance improvements of learning ability of 
intelligent entities in CGF. Another advantage offered 
by the model is the memory function, which is proven 
to be useful in the acceleration of GAs convergence.  

In the future study, it would be worthwhile 
improving the coding form to describe the CGF 
environment condition better and speeding up the 
convergence rate of GAs. 
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