
A Learning Behavioral Model of CGF
Xianquan Meng1 Yingnan Zhao2 Liguo Wang1 Qing Xue1

1 Simulation Center, Department of Equipment Command & Management, Academy of Armored Force Engineering,
Beijing 100072, P. R. China

2 College of Physics Science & Information Engineering, Jishou University, Jishou 416000, P. R. China

Abstract
The Computer Generated Force (CGF) has decision
ability by self-learning mechanism, which is an
important research field in applying machine learning
technology to military simulation. On the basis of
modeling architecture of Agent and Learning
Classifier Systems (LCSs) technologies, a learning
behavioral model framework based on Genetic
Algorithms (GA) of CGF is proposed. It discusses
elaborately the learning process of this model, in
which memory function is first introduced to
accelerate. Also, a visible validation system is
designed. The simulated results indicate that the
learning model is available and feasible.

Keywords: Genetic algorithms, CGF, Agent, LCSs,
Learning behavioral modeling

1. Introduction
Computer generated forces (CGF) are automated or
semi-automated entities in a battlefield simulation that
are generated and controlled by a computer system,
perhaps assisted by a human operator, rather than by
human participants in a simulator[1]. Recently,
interest in agent-based CGF modeling and simulation
has been on increase. According to the definition of
CGF and Agent, a simulation entity should be
autonomous and intelligent, which can adapt itself to
the time-varying state of the environment. How does
the simulation entity has such an ability yet? It should
be able to learn in a CGF model. However, this kind of
research hasn’t been studied extensively regardless of
its importance for two reasons. One is that the learning
process is too complex to be modeled effectively. The
other is that some researchers have objections to
simulation entities possessing learning ability [1].

But, most of researchers consider that learning
ability of intelligent entities is a prerequisite for
implementing a behavior model with high fidelity. In
an effort to find the best learning model, they pay their
attentions to machine learning field. Approaches to it
can be classified mainly into four categories: rule-
based, paradigm-based, networks-based and GAs-
based. Among the different categories of machine

learning algorithms, GA-based CLSs method has a
great deal of potential in CGF models.

The LCSs formalism was introduced by John
Holland in 1976 and the first implementation of LCSs
was presented by John Holland and Judith Reitman in
1978. Robert E. Smith employed the LCSs to acquire
rules for novel fighter combat maneuvers through
simulation demonstrating good success [2]. In this
paper, we apply the GA-based LCSs technique to the
CGF learning behavior model, where memory
function is first brought forward to accelerate.

The paper is organized as follows. Section II
presents an overview of the associated concepts such
as agent-based modeling, GAs and CLSs. An
architecture of CGF based on agent is built in Section
III, where we give a detailed specification of learning
behavioral model on the basis of GAs. Section IV
proposes a visible experimental framework and some
simulation results obtained. Finally, Section V
concludes the paper with some recommendations for
future work.

2. Key ideas and definitions

2.1. Agent-Based Modeling
Agents are model constructs designed to operate
independently or semi-independently. A key element
of agent design is the ability of agents to interact in a
cooperative or competitive fashion. There are however
many definitions and many different types of agents.
In a word, agent is an intelligent entity that has certain
independent ability. Structures of agent-based model
range within three fundamental categories [3]:
deliberative agent, reactive agent and hybrid agent. In
this paper, we place considerable attention on the
second type and apply the agent-based behavior
modeling technique to CGF behavior modeling.

A representative reactive agent contains four
components: a set of detectors, a set of effectors, a set
of stimulus-response rules, and a performance system.
The agent perceives its environment through its
detectors. An event in the environment causes the
detectors to generate a message that are routed to all
the rules. The rules in turn may or may not generate a

message. The rule generated messages constitute
instructions to the effectors to take a specific action in
response to the event in the environment.

2.2. Genetic Algorithms
Genetic algorithms (GAs) are stochastic adaptive
algorithms whose search method is based on
simulation of natural genetic inheritance and
Darwinian striving for survival. Mathematical
arguments show that GAs bring substantial
computational leverage to search problems, without
requiring the mathematical characteristics often
necessary for traditional optimization schemes. It has a
great deal of potential in scientific and engineering
optimization or search problems [4].

A simple genetic algorithm (SGA) can be defined
by

〉ΠΨΓΦ〈= TMPECGA ,,,,,,,,:: 0
where C is chromosome encoding, E is fitness
evaluation, 0P is initial population, M is population
size, Φ is selection operator, Γ is crossover operator,
Ψ is mutation operator, Π is replacement operator
and T is termination conditions.

An important issue in designing a SGA is the
procedure used to control the genetic operations. The
generational procedure is shown below:

SGA()
{ initialize population 0P ;
 0PP = ;
 repeat
{)21(PfrompandpparentstwoΦ ;
)2,1(ppoffspring Γ= ;
)(offspringΨ ;
),(offspringPΠ ;
 } until (T);
}
By giving more chances for the better elements to

have offspring in the next generation, the GA
facilitates an evolutionary process in which elements
in a population progressively improve over time.

2.3. Learning classifier systems
GAs-based learning classifier systems (LCSs) belong
to machine learning techniques. In fact, they are rule-
found systems, which learn and acquire new rules by
interacting with an environment. The rules are usually
in the traditional production system form of “IF state
THEN action”. And one classifier is equivalent to a
rule.

LCSs are composed of four components[5]: (1) a
classifier list, which is a condition-action rule base that

represents the current knowledge of the system; (2) the
performance component, which governs the
interaction with the environment; (3) the
reinforcement component (also called credit
assignment component), which distributes the reward
received from the environment to the classifiers
accountable for the rewards obtained; (4) the
discovery component, which is responsible for
discovering better rules and improving existing ones.

LCSs learn by trying to maximize the amount of
reward which is a feedback from an environment. This
learning process is shown as Fig. 1. The performance
component of LCSs interacts with the environment.
Depending on the consequences of interaction, the
reinforcement components update the classifier’s
fitness. In the end of each learning, the discovery
component selects batter classifiers from the
classifiers list with probability prosectional to their
fitnesses, and produce new classifiers by using these
classifiers to replace worse classifiers. At present,
LCSs have been quite successfully applied in a wide
variety of domains [6] (e.g., autonomous robotics,
knowledge discovery, and computational economics).

Fig. 1: Learning Classifier Systems.

3. Learning behavior model of CGF

3.1. Framework of agent-based
CGF

According to reactive agent model framework, we
build an agent-based CGF model shown as Fig. 2. The
model is simple because it is mainly used to research
CGF learning ability.

CGF accomplish the interactive with the
environment through its detectors and effectors to
change the state of the environment. Let BA⊗
denotes update operation of B based on A . The
transformation process of the environment, form t
state to 1+t state, can be described as the following
equation:

)()()1(ttt εβε ⊗=+ (1)

Discovery Component

Performance Component

Reinforcement Component

Condition

Action
Reward En

vi
ro

nm
en

t

where)(tε is the state of the environment perceived
by CGF though detectors at t ,)(tβ is the action
executed by CGF though effectors at t . So reward
α is defined by:

))()1(()1(ttft εεα −+=+ (2)
where)()1(tt εε −+ is the transformation of the
environment. According to the learning algorithm and
the reward α , the learning model updates rules in the
rule-base, acquire new better rules and delete worse
rules.

Fig. 2: Agent-based Framework of CGF.

3.2. Decision-making Model

Fig. 3: Decision-making Model.

Fig. 3 describes the decision-making model based on
rules. The decision-making model employs the
production rule form which is composed of two
sections: condition section and action section. The rule
condition and action are strings of characters from the
ternary alphabet { }#,1,0 . The # alphabet acts as a
wildcard allowing generalization. The string #10#011
is a rule whose front four bits are condition section
and back three bits is action section. In other words,

the string #10#011 is a rule that says “IF in state 0100
OR state 0101 OR state 1100 OR state 1101, THEN
take action 011”. Decision-making model represents
the condition as a finite-length string by using encode
mechanism and transforms string into
countermeasures by using decode mechanism.

Memory is the base of intelligence, and an
intelligent man does not make the same mistake for
several times. Acting as intelligent simulation entities,
CGF should have memory ability while learning.
Therefore, we add memory-base to Decision-making
model. CGF place wrong rules into memory-base and
don’t adopt them in the latter learning process. This
memory function is also accelerate GAs evolution
because the wrong rules haven’t the chance to be
activated.

3.3. Learning Model
Learning model adopt GAs-based reinforcement,
whose structure is shown in Fig.4.

The rule base, which is equivalent to the
population of GAs, consists of N condition-action
rules. Accordingly, one rule is an individual, and N is
the population size. A fitness to indicate the
“usefulness” of the rule can be considered as an
individual fitness. Based on the reward, individual
fitness function in Learning model is used to adjust the
fitness of rules in the rule-base. Learning model then
selects randomly parent rules from the rule-base with
probability prosectional to their fitnesses. Offspring
are produced via mutation and crossover from the
parents in the usual way and replace the rule whose
fitness is less in rule-base.

Fig. 4: Learning Model.

3.4. Learning Process
The general operational cycle for CGF learning is
described as follows:

Step 1: GAs initialize the rule-base;

Fitness
Evaluation

Reward

Rule-base
(Population)

 Update

Selection
Operation

Crossover
Operation

Mutation
Operation

Replace
Operation

Evolution

Strategy

Learning Model Decision-making Model

Rule-Base

Simulation Environment

Detectors Effectors

Reward

State

Event Action

Mach Set 1

Mach

Decode Mechanism

State

Action

Rule-base (Population)

Memory-base

Mach Set 2

Action Evaluation and Selection

Reduction

Encode Mechanism

Step 2: Initializations of the simulation system,
including simulation environment, CGF state and
simulation result;

Step 3: The detectors perceive and send the
current state of the environment to the decision-
making model;

Step 4: Decision-making model determines the
rules whose condition sections are adequately matched
by the current environment state, and builds a match
set containing the rules that don’t appear in the
memory-base;

Step 5: Decision-making model evaluates the
utility of the action section of the rule in the match set.
According to the evaluation results, the system selects
a rule and sent its action section to the effectors to be
performed. And this rule is saved at the same time;

Step 6: The effectors perform the indicated action,
usually altering the state of the environment;

Step 7: If termination condition of simulation is
satisfied, it turns to Step 8. On the contrary, it turns to
Step 3;

Step 8: According to simulation results, reward
α is formed. Learning model uses individual fitness
function and reward α to update the fitness of each
rule in the rule-base;

Step 9: The GAs employed selection, crossover
and mutation operators to generate a new rule-base;

Step 10: Learning model checks the terminate rule
of learning process. If it is satisfied, it stops. On the
contrary, it turns to Step 2.

On the basis of the above learning cycle, it’s
obvious that CGF entity perceives the environment
state and changes the environment though the action
according to the tactic provided by the decision-
making model at each step in the simulation. However,
Learning model runs only once at the end of each
simulation iteration cycle as show in Fig. 5. Here,
Physical model, which perceives the environment state,
affects and changes the environment, includes
dynamics and kinematics model, sensor model and
weapon model of CGF.
Fig. 5: Learning Process.

4. Experimental framework and
simulation studies

In order to validate the validity of the model built by
us, we design a simple visible validation system. The
system simulates engagement between two tanks. The
tank that employs the rules produced by the learning
model is student tank, and the tank that employs the
rules prescribed beforehand is teacher tank. At the end
of simulation, the results are used by the learning
model to produce the next generation of rules. The
learning process repeats until student tank win
continuously for three times.

4.1. Experimental framework
The settings of the system are described as follows:

1) Rule: The rule population for each generation
is generated by a simple GA. Each rule has a fitness
assigned by the individual fitness function. It is 9
characters long, with 5 left-hand side and 4 right-hand
side. The alphabet consists of { }0,1 . The encoding
rules of simulation environment state and action are
shown respectively in Table 1 and Table 2, where L
is the distance between two tanks, maxR is the
maximum cannon-shot and minR is the minimum
cannon-shot. Let l represent the line connecting
centroids of two tanks. α in Table 1 is the angle
between direction of advance and line l , and β is the
angle between direction of muzzle and line l .

code 0 1
1st digit maxRL < maxRL >

2nd digit minRL < minRL >

3rd digit 0≤α 0>α

4th digit 0<β 0>β

5th digit 0≠β 0=β

Table 1: Encoding of simulation environment state.

code 0 1
1st digit stop advance
2nd digit no fire fire
3rd digit muzzle turn right muzzle turn left
4th digit tank turn right tank turn left

Table 2: Encoding of action.

2) GAs: The GA in this system employs
prosectional selection, single-point crossover, and
simple mutation. Population size 100=M , crossover
rate 9.0=cP , mutation rate 05.0=mP . Based on the
fitness, new rules are arranged in descending order,
and rules of the parent population are also arranged in

Learning
 Model

Decision-
making Model

Rule-base (Population)

State

Action

Simulation Environment

Physical
Model

Once Per Simulation Cycle Once Per Frame

descending order. The latter n rules in the parent
population are replaced with the first n new rules,
where uPMn ×= , uP is replacement ratio and

5.0=uP .
3) Environment Simulation: The visualized

simulation learning environment is realized by
VC++6.0. A one-one tank engagement is generated by
the environment to evaluate the rules in the rule-base.

4) Decision-making Model: At each time step in
simulation, the rules whose condition sections are
completely matched with the current environment
state are triggered. What’s more, these rules could not
appear in the memory-base. If more than one rule is
triggered at the same time, the rule with the highest
fitness will be activated. But if there is no triggered
rules, student tank employs the default action. The
trigger/activation process continues until the
engagement is terminated, and all activated rules will
be saved in an activation list.

5) Individual Fitness Function: The function uses
the engagement score and the activation list to assign
fitness for each individual rule, which insures that the
information from previous generations can be
inherited to the next generation.

The function was composed of two steps:
Step 1: All activated rules are directly assigned

the score of the latest completed engagement by using
the following equations:

nFF ii += −1 , if the student tank wins
2/1 nFF ii −= − , if the student tank loses

where iF is individual fitness at the end of simulation
i , 1−iF is individual fitness at the end of simulation

1−i , n is the number that individual is activated in
the simulation i .

Step 2: In the selection operation, the fitness of
the offspring can be evaluated via the following fitness
function:

po FF 3/1=
where oF is the fitness of the offspring, pF is the
fitness of the parent.

4.2. Experimental Results
In order to reduce variation, each experiment is
repeated at least 10 times and the results are the
average one. Assume the following notations: N is
the number of experiment, M is the population size,

),,2,1(Ni L∈ ,),,2,1(Mj L∈ , iP is the population
at end of the experiment i , ijX is the individual in iP ,

ijF is the fitness of ijX .

Step 1: The same individuals in the each
population iP are merged and sum up their fitness.
After the merge, the population size is possibly
different, but M is still the population size to simplify
the description.

Step 2: The fitness of the same individual among
populations is not same for engagement number of
each experiment is possibly different. In order to
eliminate this abnormity, individual relative fitness

ijRF is calculated as follows:

∑
=

M

1j
ijijR FFF

ij
＝ (3)

Step 3: The same individuals in the N
populations are merged and sum up their fitness. After
the merge, N populations become one population
whose size is H . Based on the fitness, all individuals
are arranged in descending order.

Step 4: The individuals whose relative fitness is
small are not be applied in the environment. To avoid
influence the analysis of experimental results, the first
K)K(H< individuals are employed.

Assume the relative fitness of individual pX is

pRF and environment code is),,,(
21 lppp xxx L . If

action section of this individual include W , where W
is fire or advance, 1if and 2if is calculated as follow:

If 1x =
ip),,2,1(li L= ,

pRii Fff += 11

If 0x =
ip),,2,1(li L= ,

pRii Fff += 22

After processing all K individuals, matrix

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

21

2221

1211

ll ff

ff
ff

MM
 is acquired. If 21 2 ii ff > , 1=ix . If

12 2 ii ff > , 0=ix . If 21 2 ii ff ≤ and 12 2 ii ff ≤ ,
#=ix .Where ）（ lxxx ,,, 21 L is corresponding

environment code of W .
In order to simplify the experiment, we only study

two actions “advance” and “fire”. The move direction
of tank and the turn direction of muzzle are controlled
by module, so tank will auto turn to the opponent. The
simulation experiment runs for ten times. The
experiment results are analyzed by using method
presented in the paper. Table 3 and 4 are analysis
results. Obviously, we get the two rules “010010100”
and “110001000” that are just employed by teacher
tank. So, student tank has learned two actions
“advance” and “fire”.

relative fitness Environment
code 1if 2if

Adoption
value

1st digit 0.325319 0.731702 0

2nd digit 0.826195 0.230825 1

3rd digit 0 1.05702 0

4th digit 0 1.05702 0

5th digit 0.731702 0.325319 1
Table 3: Environment code of “fire”.

relative fitness Environment

code 1if 2if
Adoption

value
1st digit 1.15 0.173111 1
2nd digit 1.15 0.173111 1
3rd digit 0 1.32311 0
4th digit 0 1.32311 0
5th digit 0.173111 1.15 0

Table 4: Environment code of “advance”.

5. Conclusions
A learning behavioral model framework based on GAs
of CGF is proposed in this paper. The simulation
results obtained from a visible validation system
reveals that the model is available and feasible. Our
contributions can be summarized as follows: GAs-
based CLSs technology is first applied to agent-based
learning behavioral modeling. This will contribute to
the performance improvements of learning ability of
intelligent entities in CGF. Another advantage offered
by the model is the memory function, which is proven
to be useful in the acceleration of GAs convergence.

In the future study, it would be worthwhile
improving the coding form to describe the CGF
environment condition better and speeding up the
convergence rate of GAs.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of China (Grant No. 70471089).

References
[1] Mikel D. Petty, Do we really want computer

generated forces that learn?. Proceedings of the
Tenth Conference on Computer Generated Force,
pp.125-130, 2001.

[2] R.E. Smith, B.A. Dike, R.K. Mehra, Classifier
systems in combat: two-sided learning of
maneuvers for advanced fighter aircraft. Comput.
Methods Appl. Mech. Engrg, 186: 421-437, 2000.

[3] Wooldridge M, An Introduction to MultiAgent
Systems, John Willey & Sons, New York, 2002.

[4] M. Zhou, Genetic Algorithms: Theory and
Applications, National Defence Industry Press,
Beijing, 1999. (in Chinese)

[5] John H. Holmes and Pier Luca Lanzi, Learning
classifier systems: New models, successful
applications. Information Processing Letters, 82:
23-30, 2002.

[6] L. Bull, Applications of Learning Classifier
Systems, Springer, 2004.

