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Abstract 
In this paper, we first propose a computational model. 
Then on the basis of two virtual knowledge networks 
constructed, we investigate how diverse connecting 
mechanisms between network A and B differentially 
influence the co-evolution of the knowledge levels of 
both networks. The simulation results indicate that 
agents with high brokerage opportunities or high 
centrality enhance their knowledge levels more rapidly 
and knowledge diffusion through different knowledge 
networks seems to be affected significantly by the 
characteristics of the agents who build the knowledge 
connections across these networks. 

Keywords: Complex knowledge network, Bottom-Up 
simulation modeling, Knowledge diffusion, Centrality, 
Brokerage 

1. Introduction 
The last few years have witnessed a tremendous 
activity devoted to the characterization and 
understanding of networked systems.  There is a 
growing consensus among socio-economic scientists 
that many socio-economic phenomena display some 
inherent network features. Studies on these 
phenomena should not exclude the consideration of 
the role of the network structure.  

The study of network structural effects on 
knowledge diffusion has attracted considerable 
interests [1]-[3]. Reference [1] and [2] examined the 
relationship between network architectures and 
diffusion performance and pointed out that when a 
network structure is a small world, the steady-state 
level of average knowledge is maximal. In [3], 
simulation results showed that interregional network 
structures interact with the observability of an 
innovation’s benefits to determine diffusion. One 
common point of these research is that they utilized 
computational simulation experiments. 

One of the limitations of the existing research 
utilizing computational simulation experiments is that 
the network models, on which simulations were 

conducted, were very simple, such as regular network 
model, small world model, and etc. However, several 
empirical studies [4]-[7] have reported some important 
properties of social networks, such as small-world 
effects, an approximately scale-free degree distribution, 
a positive correlation in degree between neighboring 
nodes and a negative relationship between node degree 
and local clustering.  

Complex knowledge networks are typical social 
networks, which include many agents like 
organizations, persons and etc. The typical 
characteristic of social networks is that they consist of 
many active agents with bounded rationalities. 
Different from the existing literature, we construct 
virtual knowledge networks, utilizing a network 
formation model proposed by [8]. This was the first 
model of network formation that accounts for five 
features that characterize large socially generated 
networks: (i) a small diameter, (ii) high clustering, (iii) 
an approximately scale free degree distribution, (iv) a 
positive correlation in degree between neighboring 
nodes, and (v) a negative relationship between node 
degree and local clustering. 

The second limitation of the existing research 
utilizing computational simulation experiments is that 
the local network structural effects on knowledge 
diffusion have received minimal attention. By contrast, 
many empirical studies focused on this issue [9]-[12].  
Reference [9] pointed out that strong ties facilitate 
both explicit knowledge and tacit knowledge. 
Reference [10], [11] found a correlation between key 
intellectual properties and the centrality of actors. 
Reference [12] showed that people, acting as brokers 
with connections across structural holes, have 
competitive advantages in seeing and developing good 
ideas. In this paper, we are aiming to investigate the 
local network structural effects on knowledge 
diffusion, and explore several connecting mechanisms 
in order to enhance the knowledge level of a 
knowledge network. 

The outline of this paper is as follows. In Sect.2, 
we first propose a computational model for the 
knowledge network. Then on the basis of this model, 
simulation experiments are conducted and the results 



are given in Sect.3. In Sect.4, we give some brief 
conclusions and reveal managerial implications.  

2. The model 
In the following, we firstly construct a virtual network 
consisting of N nodes using Jackson’s network 
formation model. Jackson’s model is based on an 
explicit search process. Let tN  denote the set of all 
nodes present at time t . At each time t , a new node 
is added to the population. Upon birth, the new node 
identifies rM  nodes uniformly at random from 1−tN . 
We call these nodes parent nodes. Let rP  denote the 
probability that a new node finds a randomly 
identified node attractive to link to. In addition, the 
node searches the parent’s immediate neighborhood 
and finds other nodes. Let sP  denote the probability 
that the new node obtains a positive utility from 
linking to a given node found through search.  

Next, on the basis of a constructed virtual network, 
we model behavior of agents in the network. Then 
following the basic idea of building a system from 
Bottom to UP, a structural realistic model of a 
knowledge network is proposed. It is worth to note 
here that we adopt a strategy called pattern-oriented 
modeling [13], which attempts to make bottom-up 
simulation modeling more rigorous and 
comprehensive. Patterns are defining characteristics of 
a system, and often therefore indicators of essential 
underlying processes and structures. We found some 
patterns, which seem to characterize a knowledge 
network and its dynamics, and then implemented these 
patterns in our simulation model. This helps us 
optimize model complexity and reduce uncertainty.  

In a network, each agent is represented with a node. 
Agents could exploit external knowledge sources 
within or across regions through formal knowledge 
connections (such as technological alliance) or 
informal ones (such as technological communication). 
If there are connections between two agents, two 
nodes representing these two agents will be linked by 
an edge. Two agents interact if and only if there is a 
direct connection between them. 

Agent i is characterized by a certain amount of 
knowledge endowment, denoted as iK , which 
indicates the knowledge stock level of this agent. We 
define the degree of agent i as the number of direct 
connections of agent i has, denoted as iD . And the 
degree of agent i is regarded as the indicator of its 
centrality, however, there are three measures of 
centrality, namely degree centrality, betweeness 
centrality, closeness centrality. Degree centrality is a 
common measure of the centralization of power in 
organized studies. In general, one can argue that 
agents with more relationships with the others have 

higher levels of centrality. It is assumed that the 
degree and the knowledge stock level of an agent have 
no correlation.  

If there exists an edge between node i and 
node j , we denote the weight of this edge as ijW , 
which indicates the intensity of this relationship. Here, 
we assume the weight of an edge is following a 
uniform distribution )1,0(U . If the weight of an edge is 
set to be 1, this indicates the strongest connection 
between the corresponding nodes. On the other hand, 
that the weight of an edge is assigned a value of 0 
indicates no connection between the corresponding 
nodes. 

In this paper, we use network constraint to 
measure brokerage. Let ijp denote the proportion of 
agent i ’s network time and energy invested in 
contact j . ijNC measures to what extent  agent i ’s 
network is directly or indirectly investing in the 
agent’s relationship with contact j . And 

iNC indicates the network constraint of agent i . In 
general, one can argue that agents with low levels of 
network constraint have higher levels of brokerage 
opportunities [14]. 
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An agent is characterized by a certain knowledge 
absorptive capacity, which determines to what extent 
that the knowledge it receives from an external source 
can be assimilated. Reference [15] suggested that a 
firm’s absorptive capacity is a function of the firm’s 
level of prior related knowledge. Therefore, we 
assume in this paper that the absorptive capacity of 
agent i , denoted as iC , increases with iK  as 
follows 
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where parameter 1α controls the speed to access the 
upper limit 1.   

Next, we assume the knowledge stock of each 
agent consists of two parts. One part increases 
endogenously with the continual R&D expenditure. 
The second part is the part flowing into the agent 
through external connections, so-called the exogenous 
part. We give the expression of the knowledge stock 
level of agent i at time 1+t , denoted as )1( +tKi , as 
follows 

 



)()()()1( tKtKtKtK outiiniii −− Δ+Δ+=+    (5) 
where )(tK ini−Δ indicates the endogenous part and 

)(tK outi−Δ  indicates the exogenous part respectively. 
We assume that )(tK ini−Δ  increases according to 

following model.  Let parameter β control the upper 
limit, while letting parameter 2α  control the speed to 
access that upper limit.  
 

.              )(21
)()( tK

i
ini ie

tKtK α

β
−− +

=Δ                        (6) 

 
Let )(tK outi−Δ  be calculated with the following 

algorithm. Here, iU  indicates the set consisting of all 
the nearest neighbors of agent i . At every tΔ time 
period, agent i searches all its nearest neighbors one 
by one.  

For example, considering the adjacent agent 
)( iUjj ∈ , only if the knowledge stock level of agent 

j is higher than that of agent i , agent i  is given an 
opportunity to get its knowledge stock level enhanced. 
The increment of its knowledge stock level equals to 
the knowledge stock level difference between these 
two agents times the mediating factor iji WtC *)( . 
Obviously, the weight of an edge determines to what 
extent this agent can receive the counterpart’s 
knowledge through a connection. Meanwhile, the 
absorbing capacity of this agent determines to what 
extent this agent can absorb the received knowledge.  
Then based on the new knowledge stock level of agent 
i , the next agent in iU  would be processed. This 
learning process continues until all learning 
possibilities are exhausted.  

For this economy, we measure the aggregate 
performance of a network by observing the total 
average knowledge level over all agents, denoted as 

)(tTAK . Let  )(tTAK  be represented as  

                  
N

tK
tTAK

N

i
i∑

== 1
)(

)(                              (7) 

where N  indicates the number of agents in the 
network. 

3．Numerical analysis 

3.1 Independently developing 
network 
Initially, we design a virtual knowledge network, 
consisting 500 nodes. Here, TAK  indicates the total 
average knowledge level of this network. Within a 
single simulation experiment, we let the focal network 

develop independently, and evolve over 1000 time 
periods. The initial value of TAK  is set as 

),(~ baUTAK . Per time period, )(tTAK is 
recorded respectively.   

In simulation experiments, all parameters are 
assigned values as follows: 

001.01 =α    005.0=β    001.02 =α  

1=a     1000=b  

Firstly, we target the following three groups of 
agents. 
(group  1)agents with initially high knowledge levels. 
(group  2)agents with high brokerage opportunities. 
(group  3)agents with high centrality. 

Then we investigate the evolution of knowledge 
levels of these three groups of agents. Fig.1 shows the 
simulation results. We could see that, all three groups 
of agents show above average speed of knowledge 
enhancement. Moreover, the knowledge levels of 
group 2 and group 3 catch up with that of group 1 at 
some time period. The agents in group 2 and group 3 
learn very quickly, taking great advantage of their 
important structural positions in the focal network, 
however, they might not have the highest knowledge 
levels at the beginning. 

Here, since we referred Burt’s idea of measuring 
brokerage opportunities, we found that the centrality 
of agents is highly positively correlated with their 
brokerage opportunities. Therefore, we could not 
differentiate the behavior of group 2 and group 3, 
however, in some cases of loosing cohesive networks, 
group 2 and group 3 behave differently.   

 
Fig. 1:  Evolution of knowledge levels of three groups. 

3.2 Co-evolving networks with 
bridging ties 
Initially, we design two virtual knowledge networks 
A  and B , both consisting 500 nodes and having a 

distinct difference in their total average knowledge 
levels. Here, ATAK  indicates the total average 



knowledge level of network A  and BTAK  indicates 
the total average knowledge level of network B  
respectively. The initial values of ATAK  and BTAK  are 
set as  

 
      ),(~ 21 bbUTAK A  ),(~ 43 bbUTAK B         (8) 
where 2413 bbbb <<<  is assumed to ensure a distinct 
difference in total average knowledge levels between 
two networks. 

Within a single simulation experiment, we let two 
virtual knowledge networks A  and B  evolve over 
1000 time periods. Per time period, )(tTAKA and )(tTAKB  
are recorded respectively.   

In simulation experiments, all parameters are 
assigned values as follows: 

001.01 =α    005.0=β    001.02 =α  

4001 =b   10002 =b   03 =b   6004 =b  
Our aim is to investigate whether several diverse 

connecting mechanisms between different networks 
could help enhance the performance of the less 
developed knowledge network (network B). 
 
3.2.1  Invariant bridging ties 
At the beginning of a simulation experiment, we firstly 
target some agents with specified characteristics from 
both network A and network B, then let them build 
connections among them. These bridging ties will 
remain invariant through the whole simulation time 
window.  

In the following, five cases are investigated.  
(Case 0) There are no connections between 
network A and network B. 
(Case 1) Some agents in network A with higher 
knowledge levels build connections with some 
agents in network B with higher knowledge levels. 
(Case 2) Some agents in network A with higher 
centrality build connections with some agents in 
network B with higher centrality.  
(Case 3) Some agents in network A with higher 
brokerage opportunities build connections with 
some agents in network B with higher brokerage 
opportunities. 
(Case 4) Some randomly selected agents in 
network A build connections with some randomly 
selected agents in network B. 
 

       Fig. 2 shows the simulation results of network B. 
As we could see, obviously the knowledge level of 
network B in the case of no connections between 
network A and network B (case 0) is the lowest at 
each time period, compared with the other cases with 
the existence of connections.  The knowledge level of 
network B in case 1 behaves similarly to that of case 4, 
which is lower than that of case 2 and case 3.  

       Here, we found that the centrality of agents is 
highly positively correlated with their brokerage 
opportunities, which might answer the question why 
the knowledge level of network B in case 2 behaves 
similarly to that in case 3.  From the simulation results, 
we could draw the conclusion that the connecting 
mechanism, namely purposely connecting some 
targeted agents with high centrality or brokerage 
opportunities from both network A and B will 
contribute to the rapidest enhancement of the 
knowledge level of network B.  

 
Fig. 2:  Evolution of knowledge levels of five cases. 

 
In addition, Fig.3 shows the comparison of 

evolution of knowledge levels of network A and 
network B in case 0 and case 3.  We could see that, 
while evolving with time periods, the gap of the 
knowledge levels of two networks in case 3 is 
maintained at an acceptable level, while in case 0 the 
gap has a tendency to be enlarged gradually.   

 
Fig.3: Comparisonbb of knowledge levels (network A and 
B). 
 
3.2.2 Dynamically rebuilding bridging ties 
Next, we investigate several other connecting 
mechanisms. At each time period similarly we target 
some agents with specified characteristics from both 



network A and network B, then let them build 
connections among them. But in each connecting 
mechanism, these bridging ties will be rebuilt 
dynamically.  

In the following, three cases are investigated.  
(Case 5-1) Targeting the agents with both high 
knowledge levels and high brokerage opportunities 
from some selected agents with high knowledge 
levels in network A and network B, then building 
connection among them.  
(Case 5-2) Targeting the agents with both high 
brokerage opportunities and high knowledge levels 
from some selected agents with high brokerage 
opportunities in network A and network B, then 
building connection among them.  
(Case 5-3) Selecting some agents with high 
knowledge stock levels in network A and network 
B, then building connections among them. 

 
Fig. 4 shows the simulation results of network B. 

As we could see, the knowledge level of network B in 
case 5-3 ranks the lowest, compared with the other 
cases. Case 5-1,5-2 and case 3 (or case 2, defined in 
section 3.2.1) behave similarly. Moreover, the 
knowledge level of network B in case 5-2 ranks the 
highest, however, the difference from that of case 3 is 
not significant.  

We could reach a conclusion that, in order to 
enhance the knowledge level of a less developed 
knowledge network, the optimum connection 
mechanism is what is proposed in case 5-2. However, 
dynamically rebuilding bridging ties seems very costly. 
Therefore, we recommend the connecting mechanism 
proposed in case 3 or case 2, namely selecting some 
nodes in network A and network B with high 
brokerage opportunities or high centrality, building 
connections among these nodes, and keeping the 
bridging ties invariant with time t, which has the 
satisfied effectiveness, but not so costly.  

 
Fig. 4: Evolution of knowledge levels of four cases. 

 

4. Conclusions 
In this paper, we first propose a computational model. 
Then on the basis of two virtual knowledge networks 
constructed, we investigate how diverse connecting 
mechanisms influence the evolution of the knowledge 
levels of these networks. Based on the simulation 
results, we could draw the following two conclusions. 

Firstly, agents with high brokerage opportunities 
or high centrality enhance their knowledge levels more 
rapidly, which draws a good line with the empirical 
research [10-12].  

Secondly, knowledge diffusion through different 
knowledge networks seems to be affected significantly 
by the characteristics of the agents who build the 
knowledge connections among networks, namely high 
knowledge levels, high centrality and high brokerage 
opportunities. We made a comparative analysis of 
several different connecting mechanisms, among 
which the mechanisms of building connections among 
the agents with high brokerage opportunities or high 
centrality behave the best. 

This research could provide guidance for policy-
makers who would rather speed knowledge diffusion 
through a knowledge network. Through purposely 
building knowledge connections among the agents 
with high brokerage opportunities or high centrality in 
different networks, the knowledge diffusion through 
different knowledge networks is the most effective. 
Policy-makers should target the agents with high 
brokerage opportunities or high centrality in both the 
less developed knowledge network and the high 
developed knowledge network first, and then 
encourage the connections among these agents, rather 
than let the knowledge networks self-organize their 
structures.  

Finally, there are three limitations of this research. 
Firstly, we studied the structural effects of diverse 
connecting mechanisms on knowledge diffusion, on 
the basis of a comparatively static network structure. 
However, system dynamics and the underlying 
topology are mutually correlated. Network structure is 
also evolving, being affected by the various dynamical 
processes. Secondly, our assumption that knowledge 
networks have some typical characteristics as the other 
types of social networks have, which need to be 
demonstrated empirically. Thirdly, the modeling of the 
behavior of agents should take their adaptive learning 
abilities into consideration.  
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