
A Heuristic Scheduling on Heterogeneous Tree
Network

Kun Huang1 Zhiyan Wang1 Xiaoxiong Weng2
1Department of Computer Science and Engineering, South China University of Technology, Guangzhou 510640,

China
2Department of Traffic Engineering, South China University of Technology, Guangzhou 510640, China

Abstract
This paper firstly discusses the problem of
independent tasks scheduling on tree network, where
resources have different speeds of computation and
communication. And then analyzes the property of
tree-shaped logical network topologies, presented an
integer linear programming for this problem, and a
heuristic scheduling is also proposed. At last, a
demand-driven and dynamic heuristic algorithms:
TreeGrid is developed. The experimental results show
that the algorithms for the scheduling problem obtain
better performance than other algorithms.

Keywords: Grid computing, Task scheduling, Integer
linear programming;

1. Introduction
The popularity of the Internet and the availability of
powerful computers and high-speed networks as low-
cost commodity components are changing the way we
use computers today. These technical opportunities
have led to the possibility of using geographically
distributed and multi-owner resources to solve large-
scale problems in science, engineering, and commerce.
Recent research on these topics has led to the
emergence of a new paradigm known as Grid
computing. The general problem of scheduling tasks
to machines has been shown to be NP-hard.
Scheduling the tasks of a parallel application on the
resources of a distributed computing platform
efficiently is critical for achieving high performance.
The scheduling problem has been studied for a variety
of application models, many heuristic scheduling have
been developed, such as Min-Min, Max-Min,
FCFS,GA [2] etc.

There are some discussions about tasks
scheduling in tree-based platform. Paper [1] prove that
the problem of tasks scheduling on tree network is NP-
hard, In paper [11] , A realization and some algorithms
on tree-based Grid are offered. Paper [7] discusses the

problem of divisible load in tree network. The state of
the tree and star computational environments is
surveyed and some open problems are discussed in
paper [3].

The remainder of this paper is organized as
follows. In Section 2, we detail our platform and cost
models. In Section 3, we analyze the tree network and
propose a linear programming about this model. A
dynamic heuristic algorithm is offered in Section 4.
And the simulation and experimentation about this
algorithm is reviewed in Section 5. At last, a summary
and some issues worthy of further exploration are
proposed.

2. The platform and cost models
In this paper, we limit our discussion to tree-shaped
logical network topologies. In this tree network, the
network and the processors have different speeds.
Because of the topologies, it is easy to implement
master-worker computations, RPC (remote procedure
call) etc.

For communications, the one-port model is used:
The master can only communicate with a single
worker at a given time-step. We assume that
communications can overlap computations on the
workers: A worker can compute a load fraction while
receiving the data necessary for the execution of the
next load fraction. And a worker (processor) can at the
same time receive one task while sending another one
to one of its children.

Fig. 1: An example of a tree.

Fig. 2: An example of a schedule.

The example provided in figure 1, 2 shows how a
schedule can be executed. The tree is shown on figure
1. The numbers in the circles are the computation
times associated with the nodes. It is the time it takes
for a task to be executed on the node. The numbers on
the edges are the communication time. They represent
the time needed to send one task using the labeled link.
On the diagram, vertical dotted lines are time units,
horizontal dashed lines are related to nodes. The
horizontal arrows are the execution of the tasks, and
the oblique ones are the communications. This kind of
settings will be used in the diagrams describing the
scheduling in the following sections.

In this model, it is usually assumed that every
node has an unlimited buffer capacity. However the
proof is still valid if all the nodes have a buffer of size
one.

3. The tasks scheduling on
heterogeneous tree network

As shown in Figure 1, in this article, we assume:
(1) P= {P0, P1… Pk-1} represent the workers in the tree
network. There are k nodes in this network. P0 is the
root node, and P1… Pk-1 are its children nodes.
(2) Xi is the sum of the tasks that the node Pi executed.
(3) Each worker Pi has a computing power Wi: It takes
XiWi time units to execute Xi units of load on worker
Pi.
(4) Each worker Pi has a communicational power Gi: it
takes XiGi time units to send Xi units of load from
root to worker Pi.
(5) M is the sum of all tasks.
(6) Ci represent the list of the node Pi‘s children.

According to the property of tree-shaped logical
network topologies, some equalities and inequalities
can be proposed from the model.
 1

0
k
i
−
=∑ Xi = M (1)

Since Xi represents the sum of the tasks that the node
executes, the sum of all Xi is M.

 1≤Xi≤M 1≤i≤k-1 (2)
 The sum of the tasks of arbitrary node is within [1, M].

 X0W0 ≤ T (3)
The time executed by root node is less than the time of
all tasks finished.

 Xi(Gi+Wi) ≤T (4)
For each node Pi, the time spends in computing and
communication is always less than the time of all tasks
finished.

 1
0

k
i
−
=∑ XiGi ≤ T 1≤i≤k-1 (5)

The sum of time of all nodes spend in communication
is always less than the time of all tasks finished.

 Gi (Xi+ ∑ p∈Ci Xp) ≤ T 1≤i≤k-1 (6)
For each non-leaf node, the time spend in
communication is always less than the time of all task
finished. Note that, the content in bracket is the sum of
the tasks executed by Pi and its children.

From above, the optimal solution is given by the
following linear program:
Minimize T,
Subject to:

1

0

0 0

1

1

(1)

(2)1 0 1
(3)
(4) () 0 1

(5) 0 1

(6) 0 1
i

k

i
i

i

i i i
k

i i
i

i i p
p C

X M

X M i k
X W T
X G W T i k

X G T i k

G X X T i k

−

=

−

=

∈

⎧ =⎪
⎪

≤ ≤ ≤ ≤ −⎪
⎪ ≤⎪⎪ + ≤ ≤ ≤ −⎨
⎪

≤ ≤ ≤ −⎪
⎪
⎪ ⎛ ⎞⎪ + ≤ ≤ ≤ −⎜ ⎟
⎪ ⎝ ⎠⎩

∑

∑

∑

M, T, i, k, Wi ,Gi ,Ci is positive integer, Gi ,Wi , Ci is
already known, Xi is variable, T is the time all tasks
finished. Minimize T is target function.

The solution of the linear programming can get
by the polynomial-time algorithms [8] presented by
Karmarker. The algorithmic complexity is O (n3).

If all tasks are identical independent tasks, the
linear programming can change as follows:
Maximize M,
Subject to:

1

0

0 0

1

1

(1)

(2) 1 0 1
(3) 1
(4) () 1 0 1

(5) 1 0 1

(6) 1 0 1
i

k

i
i

i

i i i
k

i i
i

i i p
p C

X M

X M i k
X W E
X G W E i k

X G E i k

G X X E i k

−

=

−

=

∈

⎧
=⎪

⎪
≤ ≤ ≤ ≤ −⎪

⎪ ≤⎪⎪ + ≤ ≤ ≤ −⎨
⎪

≤ ≤ ≤ −⎪
⎪
⎪ ⎛ ⎞⎪ + ≤ ≤ ≤ −⎜ ⎟
⎪ ⎝ ⎠⎩

∑

∑

∑

1E is one time-unit. Maximize M is target function.
The inequalities aim at determining the maximum
amount of the workers can process in one time-unit.
Note that the only impact factor is the order of the
communicational power in optimal scheduling. So we
infer: there is an optimal communicational order, the
model will reach maximal tasks in one time-unit by
using the order.
Proposition 1. if all tasks are identical independent
tasks and the loads are large enough, in optimal
scheduling, all the nodes will participate in order of
increasing communicational power.
Proof. Assume that there are two different systems A
and B, and the communicational power GA<GB, so in
one time-unit, the tasks transferred XA>XB, obviously,
in common system, the communicational power
G<<W, the computing power (if G>W, the
communicational power will bottleneck the system),
therefore, the finished tasks MA >MB.

4. A heuristic algorithms based on
linear programming

The solutions of the linear programming above are
approximating optimal, include the time of all tasks
finished, the lists of tasks assigned to every node.
From proposition 1, we know in some condition, all
the nodes will participate in order of increasing
communicational power G, so we propose a heuristic
algorithms based on linear programming: TreeGrid.

We describe the algorithm as following:
Procedure algorithm TreeGrid ()
Initialization ();
Resource_Discovery ();
//system gets the node’s capacities of communication
and computation.
Get_Tasks();
Soluting ();
//The root node get tasks, solute the linear
programming, the result put in Queue (Task).
Reorder_G ();

 //all nodes queue in order of increasing link capacities,
the result put in Queue (g).
Do While Queue (Task) not empty
P = Select_Computer(Queue(g));
X = Matching (P, Queue (Task));
 //get a node Pi from Queue (g), find matching tasks
from queue(Task).
Trans_Task();
Execute_Task()
 // send tasks to Pi execute.
 End While
Trans_Result()
//All nodes transfer the result to root node, the
algorithm end
End

Let’s explain the TreeGrid algorithms briefly.
Firstly the system checks error. Since the grid system
is always heterogeneous, dynamic, we must examine
the system’s resource carefully. We can get the power
of communication and computation by run some loads
in every worker; exclude the invalid nodes from
system before all tasks start. Secondly according the
tasks and the resource, we solute the linear
programming, the results put in Queue (Task). Thirdly
we reorder the workers so that G1≤G2 ≤…≤Gk-1, the
result put in Queue (g). At last do following steps until
Queue (g) empty: get a node from Queue (g), find
matching tasks from Queue (Task), and execute.

5. Experimental results
In order to prove the effectiveness of the algorithm, we
compare TreeGrid with Min-Min [2], FCFS [2]
algorithms. The main idea of algorithm Min-Min
(Max -Min) is: compute the shortest time of every task,
select the shortest (longest) task to matching node
execute, then delete the task. Repeat the steps until all
tasks finished. The main idea of algorithm FCFS is:
Let the first task run first. The two algorithms have
better performance in general grid task scheduling,
always selected to comparative benchmark.

The experiment use GridSim to simulate the three
algorithms above. GridSim provide a grid simulation
environment. In this simulation environment, users
can easily add various different scheduling policies
into the task scheduler and don’t need to encode for
other parts of the environment repeatedly.

In this experiment, we randomly product 5
different two-level trees networks and 5 multi-level
trees networks. The GridSim use virtual time to
express time. This makes the results that made by
different speed machines become comparable. Take
account the computing power of the machine, we limit
sum of the nodes within [3, 15], the node’s
computation power within [30, 60], the edge’s

communicational power within [1, 9], the size of tasks
within [10, 20], then we run 10, 50, 100 tasks
respectively in GridSim, applying the three different
algorithms. The results are shown as follows:

 10 tasks 50 tasks 100 tasks
FCFS 258 1597 2967
Min-Min 248 1462 2597
TreeGrid 247 1376 2484
Improvement 0.58% 4.64% 4.36%

Fig. 3: The results of task scheduling on the two-level tree
grid computing platform.

 10 tasks 50 tasks 100 tasks
FCFS 269 1547 2962
Min-Min 258 1314 2557
TreeGrid 255 1224 2376
Improvement 1.12% 6.84% 7.06%

Fig. 4: The results of task scheduling on the multi-level tree
grid computing platform.

From the figure 3, 4, we can see that the TreeGrid
algorithm can increase performance by approximately
4%~7% as compared to the Min-Min case. In two-
level tree, the communicational delay is not obviously,
the results of the three algorithms are almost same. In
multi-level tree, as the communicational delay become
more visible, the TreeGrid algorithm become more
effective. This proves the TreeGrid algorithm is fit for
multi-level tree environment. Note that when the

system runs a small amount of tasks, the improvement
of the TreeGrid is slight.

The algorithmic complexity of TreeGrid is O(n3).
That is bigger than Min-Min (O(n2)). But the
algorithm run only once, in the condition of the loads
is large enough, the impact is not great.

6. Summary
An efficient Grid scheduling system is an essential
part of the Grid. This paper analyzes the property of
tree-shaped logical network topologies, presented an
integer linear programming for this problem, at last, a
heuristic scheduling is also proposed. The
experimental results show that the algorithms for the
scheduling problem obtain better performance than
other algorithms. On the other hand, task scheduling
on tree network is NP-hard also, there are many issues
worthy of further exploration, such as the algorithmic
complexity, the order problem of the tasks matching to
the nodes etc. This need research in future work.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of GuangDong Province of China
(Grant No. 05011896).

References
[1] P. Dutot, Complexity of master-slave tasking on

heterogeneous trees. European Journal on
Operational Research, 164(3): 690-695, 2005.

[2] T.D. Braun, H.J Siegel., Beck N, A comparison
of eleven static heuristics for mapping a class of
independent tasks onto heterogeneous distributed
computing systems. Journal of Parallel and
Distributed Computing, 61(6): 810-837, 2001.

[3] O. Beaumont, H. Casanova, A. Legrand and Y.
Robert, et.al., Scheduling divisible loads on star
and tree networks: Results and open problems.
IEEE Trans. on Parallel and Distributed Systems
(TPDS), 16(3): 207-218, 2005.

[4] P.F. Dutot, Master-slave tasking on
heterogeneous processors. International Parallel
and Distributed Processing Symposium, IEEE
Computer Society Press, 2003.

[5] R. Bajaj, D.P. Agrawal, Improving Scheduling
of Tasks in a Heterogeneous Environment. IEEE
Transactions on Parallel and Distributed
Systems, 15(2): 107-118, 2004.

[6] M, Arora, S.K. Das, R. Biswas, A Decentralized
Scheduling and Load Balancing Algorithm for
Heterogeneous Grid Environments. Proc. of

International Conference on Parallel Processing
Workshops (ICPPW'02), pp. 499-505, 2002.

[7] S. Bataineh, T. Hsiung, T.G. Robertazzi, Closed
Form Solutions for Bus and Tree Networks of
Processors Load Sharing a Divisible Job. IEEE
Trans. Computers, 43(10): 1184-1196, 1994.

[8] N. Karmarkar, A new polynomial-time algorithm
for linear programming. Combinatorica, 4(4):
373-39, 1984.

[9] T. Robertazzi, Divisible Load Scheduling,
http://www.ece.sunysb.edu/tom/dlt.html, 2004.

[10] V. Bharadwaj, G. Barlas, Scheduling Divisible
Loads with Processor Release Times and Finite
Size Buffer Capacity Constraints in Bus
Networks. Cluster Computing, 6(1): 63-74, 2003.

[11] W.W. LIN, Independent Tasks Scheduling on
Tree-Based Grid Computing Platforms. Journal
of software, 17(11): 2352-2361, 2006.

