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Abstract   
Based on T-S fuzzy model, the robust guaranteed cost 
control problem is studied for a class of uncertain 
singular systems with state and input delays. Sufficient 
conditions are provided for the construction of a state 
feedback guaranteed cost controller. These conditions 
are given in terms of the feasibility of linear matrix 
inequalities (LMIs) and guarantee that the closed-loop 
systems are quadratically stable. Moreover, an upper 
bound of the guaranteed cost is also obtained. A 
numerical example is provided to demonstrate the 
effectiveness of the proposed method. 
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1. Introduction 
In the past few years, there has been rapidly growing 
interest in fuzzy control of nonlinear systems, and 
there have been many successful applications. In most 
of these applications, the so-called Takagi-Sugeno(T-S) 
type fuzzy model is used to represent a nonlinear 
system; then based on this fuzzy model, a fuzzy 
controller is designed. Taniguchi T. et al.[1] 
established T-S fuzzy singular model, which can 
describe or approximate a wider class of complex 
nonlinear systems. From then on, some results on this 
model have been reported.  

Time delays and parameter uncertainties are 
frequently encountered in the behavior of many 
physical processes and very often they are the main 
cause for poor performance and instability of control 
systems. In view of this, the robustness issue of time-
delay and parameter uncertain systems is a topic of 
great practical importance which has attracted a great 
deal of interest for several decades. In recent years, 
some authors have paid their attention to control of 
nonlinear systems with time-delay and parameter 
uncertainties by using T-S fuzzy models. Cao and 
Frank  first considered the T-S based fuzzy control for 
nonlinear systems with time delay[2, 3]. The stability 

analysis and synthesis of these systems via linear T-S 
fuzzy models was addressed in terms of LMIs.  

In the control of uncertain systems, it is desirable 
to design a control system, which is not only stable but 
also guarantees an adequate level of performance. One 
approach to this problem is the so called guaranteed 
cost control approach in which a fixed quadratic 
Lyapunov function is used to establish an upper bound 
on the closed-loop value of an integral quadratic cost 
function. Recently, there are many results on fuzzy 
guaranteed cost control for normal nonlinear systems 
[4-8]. E. Boukas proposed a new approach to develop 
the results on fuzzy guaranteed cost control[4]. Bing 
Chen et al. investigated guaranteed cost control for T-
S fuzzy systems with state and input delays and also 
derived stability and stabilization conditions which 
were delay-dependent for state delay and delay-
independent for input delay[5]. To the best of our 
knowledge, there have been few research results on 
fuzzy guaranteed cost control for uncertain singular 
nonlinear systems with state and input delays.  

We present in this paper a guaranteed cost 
controller for uncertain singular systems with both 
state and input time delays based on T-S fuzzy model. 
Sufficient conditions for the existence of fuzzy 
guaranteed cost control law for the systems are 
obtained. A new Lyapunov functional and LMI 
approach are employed to analyze the stability and 
design the guaranteed cost controller. Finally, a 
simulation example is provided to demonstrate the 
effectiveness of the proposed method.  

Notations: nR  denotes the n -dimensional 
Euclidean space, || ||⋅  refers to either the Euclidean 
vector norm or the induced matrix 2-norm. 

([ ,0], )nC Rτ− denotes the Banach space of continuous 
vector functions mapping the interval [ ,0]τ− into nR , 
the superscript ‘T’ denotes matrix transposition 
and I is the identity matrix of appropriate dimensions, 
the notion X Y> (respectively, X Y≥ ), where X  
and Y are symmetric matrices, means that the matrix 
X Y− is positive definite (respectively, positive 

semidefinite). 

2. Problem Statement 



Consider the following uncertain singular system 
described by T-S model with state-delay and input-
delay, the rule of the model is 

Controller rule i ：if 1( )tξ  is 1iM  and 2 ( )tξ  is 

2iM L  and ( )p tξ  is ipM , then 
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where 1 2( ) ( ), ( ), , ( )pt t t tξ ξ ξ ξ⎡ ⎤= ⎣ ⎦L  is the 

premise variable vector, ijM  is the fuzzy set, 

( ) nx t R∈  is the state vector, ( ) mu t R∈  is the control 

input, 1 1, , , ,i i i iE A A B B  are known real constant 
matrices with appropriate dimensions and 
rankE r n= <  . The scalars 1 0τ >  and 2 0τ >  are 
constant state and input time delays, respectively. 

1 1, , ,i i i iA A B BΔ Δ Δ Δ  are time-varying matrices 
representing norm-bounded parameter uncertainties 
and are assumed to be of the following form 
[ ] [ ]1 1 1 1( )i i i i i i i iA A B B DF t G G E EΔ Δ Δ Δ =  
where D , iG , 1iG , iE and 1iE are known real constant 
matrices with appropriate dimensions, the uncertain 
real time-varying matrices ( )F t satisfying 

( ) ( )TF t F t I≤  
( ) [ ,0]t Cϕ τ∈ −  is a compatible continuous vector 

valued continuous initial function. 
By using singleton fuzzy generator, product of 

fuzzy inference and weighted average defuzzifier, the 
global fuzzy control system can denote as the 
following form 
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( ( ))ij jM tξ is the degree of the membership of ( )j tξ  

in ijM . 

To stabilize the class of systems under 
consideration, we assume that the state feedback fuzzy 
controller is described by the following 
Controller rule i ： if 1( )tξ  is 1iM  and 2 ( )tξ  is 

2iM L  and ( )p tξ  is ipM , then 
( ) ( )iu t K x t=  

The overall state feedback fuzzy controller is 
represented by 
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where jK are the local control gains. For simplicity, 
by using the following notions  

( )i i iA A A t= + Δ ,   1 1 1 ( )i i iA A A t= + Δ ,  

( )i i iB B B t= + Δ ,   1 1 1 ( )i i iB B B t= + Δ , 

( ) ( ( ))j jh t h tξ= . 

and substituting the controller (2) to the system (1), we 
can get the closed-loop system  
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                                                                                    (3) 
Given a positive definite symmetric matrices 

Q and R , the cost function associated with system (1) 
is  

0
[ ( ) ( ) ( ) ( )]T TJ x t Qx t u t Ru t dt

∞
= +∫           (4) 

In this paper we are interested in developing 
sufficient conditions for designing a state feedback 
controller that stabilizes the system and at the same 
time guarantees that the chosen cost is bounded for all 
admissible uncertainties. Sufficient conditions are 
established for this purpose to synthesize such 
controller by the LMI method. 

Before we give the main result of this paper, 
some definitions and lemmas are introduced which 
will be used in the rest of the paper.  

Definition 1 The nominal fuzzy singular system 
(1) with ( ) 0u t = is regular, if there exists s C∈ , 
such that 
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Definition 2 The nominal fuzzy singular system 
(1) with ( ) 0u t = is impulse-free, if 
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Definition 3 The regular and impulse-free fuzzy 
singular system is quadratically stable if ( ) 0V t <&  



with ( ( )) ( ) ( )T TV x t x t E Px t= , where nonsingular 
matrix P satisfying T TE P P E= . 

Lemma 1[9] Given matrices , ,A D E and 
0R > with appropriate dimensions. Let ( )F t be of 

appropriate dimensions and satisfying 
( ) ( )TF t F t I≤ ,  then the following inequality hold. 

(a) For any scalar 0ε > , 
1( ) ( )T T T T TDF t E E F t D DD E Eε ε −+ ≤ +  
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Lemma 2[10] For any constant matrix 0M >  
and scalar 0σ> , vector function [ ]( ) : 0, nx t Rσ →  
such that the integral concerned are well defined, the 
following inequality holds 
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3. Main Results 
In this section, an existence condition of guaranteed 
cost controller for system (1) is proposed, which not 
only guarantees the closed-loop system is 
asymptotically stable for all admissible uncertainties, 
but also provides an upper bound for the cost function. 

Theorem 1 Consider the singular system (1) and 
the cost function (4), then the corresponding closed-
loop system (3) is asymptotically stable if there exist  
matrices 0S > , 0L > and nonsingular matrix P , 
such that the following matrix inequalities hold 

0T TE P P E= ≥                               (5) 
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then the controller (2) is a guaranteed cost controller 
for system (3) in terms of the cost function (4) and an 
upper bound of the guaranteed cost is  
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Proof. Define Lyapunov function 
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                                                                                   (8) 
It is easy from (3) and (5) to see that the time 

derivative of 1V along any trajectory of the closed-loop 
system (3) is given by  
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Since 0L > , we can get the following inequality 
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                                                                                 (10) 
Then substituting (10) into (9) yields 
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The derivative of 2V  and 3V  in (8) are obtained, 
respectively 
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Then we have 
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On the other hand, from (2), ( )u t can be 
rewritten 
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Therefore 
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Choose T
i i iT K LK= , so it follows from (6), (11) 

and (12) that 
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So the closed-loop system (3) is quadratically stable. 
Furthermore, integrating both sides of the above 

inequality from 0 to ∞ produces 
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This completes the proof. 
In order to apply the LMI box in Matlab software, 

we need to transform (5) and (6) into the following 
LMIs. 

Theorem 2 Consider the singular system (1) and 
the cost function (4), if there exist 
matrices 0Z > , 0N > , nonsingular matrix X , 
matrices ( 1, , )iF i k= L  and  positive real numbers 

iβ  and ijε satisfying 
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then the controller (2) is a guaranteed cost controller 
for system (3) in terms of the cost function (4) and the 
gains of the state feedback controller are given by 

1, 1, , .i iK F X i k−= = L  Moreover, an upper bound 
of the guaranteed cost is  
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Proof. The inequality (6) in theorem 1 can be 
written as 
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Applying Schur complement, the inequality (14) 
is equivalent to  
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                                                                                 (18) 
So substituting (18) into (17) yields an inequality and  
applying Schur complement repeatedly to the 
inequality, it is straightforward to verify that this 
yields 
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(19) 
where 

1
1 1

( ) ( )

( )

T T
i i j i i j

T T T T
ij i i i

P A B K A B K P S

P DD P P B L B Pε β −

Φ = + + + +

+ + +
 

Pre-multiply the inequality (19) by the matrix 
( , , , , , , )T Tdiag P P I I I I I− − and post-multiply by the 

matrix 1 1( , , , , , , )diag P P I I I I I− − , introduce new 
variables 1X P−= , 1

j jF K P−= , 1TZ P SP− −= and 
1N L−= , consequently,  (19) is equivalent to (15). 

Correspondingly, (13) becomes (5). 
According to theorem 1, the result follows 

immediately by replacing P , S  and L  into (7). 

Remark Since (13) is an improper linear matrix 
inequality, we should transform it to a proper one. 

Without loss generality, provided that 0
0 0
rI

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

the nonsingular matrix decomposes to block matrix 
1 2

3 4

X X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, then (13) implies 1

3 4

0X
X

X X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

where 1X  is a symmetric positive-definite matrix, 4X  
is nonsingular. 

4. Numerical Example 
In this section, we give an example to demonstrate the 
effectiveness of the proposed method. 

Consider a uncertain singular time-delay system 
(1) and (2) based on T-S model with parameters as 
follows: 

1 0
0 0

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  1

1 1
0 1

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

,  2

0 1
1 0

A ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

11

0 0
,

0.1 0.2
A ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 12

0 0
0.1 0.1

A
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  

1

0
1

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  2

2
1

B ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  11

0
,

0.1
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 12

0.2
,

0
B ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

1

1 0
0 0.1

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  
2

1 0
1 0.2

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,  1

0.1
0

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

2

0
0.2

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,    11

1 0.1
0 1

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,    12

0 0
0.1 1

G ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

11

0
1

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,   12

0.1
0.2

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,   0.11 0
0 0.1

D ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, 

Q I= ,  R I= ,  1 1τ = ,   2 2τ = , 

[ ]1( ) 0 , 2,0tt e tϕ +⎡ ⎤= ∈ −⎣ ⎦ , 

{ }( ), ( ), ( )F diag r t s t q t= ,  where ( ) ( ) ( ) 1r t s t q t ≤ , 

11 1
1( ( )) 1 1 xh x t e−= −
+

, 
12 1

1( ( )) 1 xh x t e−=
+

. 

Using Matlab LMI Control Toolbox to solve the 
LMI (15), we obtain the following feasible solution: 

0.3410 0
-0.1695 0.1082

X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 0.6454  0.1714
 0.1714 0.1968

Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

1.2592N = ,   1 1.3475β = ,   2 1.0395β = ,  

11 1.1037ε = ,  22 1.0128ε = ,  

[ ]1 -0.0770 -0.2830F = , [ ]2  -0.3298 -0.3176F = . 

the gains of the state feedback controller are given 
[ ]1K 1.2083 1.5490= − , [ ]2 2.4265 2.9365K = − − . 



An upper bound of the guaranteed cost is 
* 31.1745.J =  

5. Conclusions 
In this paper, based on the T-S fuzzy model, we have 
studied the fuzzy control design problem for nonlinear 
uncertain singular systems with state delay and input 
delay. An LMI-based condition for the existence of 
fuzzy guaranteed cost controllers has been derived. 
The resulting fuzzy controllers can guarantee that the 
closed-loop fuzzy system is quadratically stable and 
results in an upper bound of the closed-loop value of 
cost function. A numerical example is given to 
demonstrate the effectiveness of the proposed method. 

References 
[1] T. Taniguchi, K. Tanaka, K. Yamafuji and H.O. 

Wang, Fuzzy descriptor systems: Stability 
analysis and design via LMIs. Proc. of American 
Control of Conference, San Diego, pp. 1827-
1831, 1999. 

[2] Y.Y. Cao, P.M. Frank, Analysis and synthesis of 
nonlinear time-delay systems via fuzzy control 
approach. IEEE Trans. Fuzzy System, 8: 200-211, 
2000. 

[3] Y.Y. Cao, P.M. Frank, Stability analysis and 
synthesis of nonlinear time-delay systems via 
linear Takagi-Sugeno fuzzy models. Fuzzy Sets 
and Systems, 124: 213-229, 2001. 

[4] E. Boukas, Fuzzy guaranteed cost control for 
nonlinear systems. Fuzzy Information Processing 
Society, 279-283, 2006. 

[5] B. Chen, X.P. Liu, S.C. Tong, C. Lin, 
Guaranteed cost control for T-S fuzzy systems 
with state and input delays. Fuzzy Sets and 
Systems, 1-17, 2007. 

[6] B. Chen,  X.P. Liu, Fuzzy guaranteed cost 
control for nonlinear systems with time-varying 
delay. IEEE Trans. Fuzzy Systems, 13: 238-249, 
2005. 

[7] G.F. Ma, S. Zhong, L.K. Zhu, Y.Q. Liu, Robust 
analysis of fuzzy guaranteed cost control for a 
class of time-delay systems with uncertain 
parameters. Proceedings of the Third 
International Conference on Machine Learning 
and Cybernetics, Shanghai, pp. 26-29, 2004. 

[8] X.P. Guan, C.L. Chen, delay-dependent 
guaranteed cost control for T-S fuzzy systems 
with time delays. IEEE Trans. Fuzzy Systems, 12:  
236-249, 2004. 

[9] Y. Wang, L. Xie, C.E. De Souza, Robust control 
of a class of uncertain nonlinear systems. 
Systems Control Lett. 19: 139-149, 1992. 

[10] J.H. Park, O.M. Kwon, Guaranteed cost control 
of time-delay chaotic systems. Chaos, Solitons 
and Fractals, 27: 1011-1018, 2006. 


