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Abstract 
The various-density problem has become one of the 
focuses in density based clustering research. A novel 
dispersive degree based algorithm combined with 
classification, called CDDC, is presented in this paper 
to remove the hurdle. In CDDC, a sequence is 
established for depicting the data distribution, 
discriminating cores and classifying edges. Clusters 
are discovered by utilizing the revealed information. 
Several experiments are performed and the results 
suggest that CDDC is effective in handling the 
various-density problem and is more efficient than the 
well-known algorithms such as DBSCAN, OPTICS 
and KNNCLUST. 
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1. Introduction 
One of the primary data mining tasks is clustering 
analysis. The goal of a clustering algorithm is to group 
the objects of a database into a set of meaningful 
subclasses (clusters). A clustering algorithm can be 
used either as a stand-alone tool to get insight into the 
distribution of a data set, or as a preprocessing step for 
other algorithms which operate on the detected 
clusters. Applications of clustering are, for instance, 
computational analysis, pattern recognition, medical 
diagnosis, web retrieval. For each of these applications 
specialties are requested [1], such as scalability, ability 
to deal with different types of attributes, ability to 
handle dynamic data, discovery of clusters with 
arbitrary shape, minimal requirements for domain 
knowledge, able to deal with noise and outliers, 
insensitive to order of input records, high 
dimensionality, incorporation of user-specified 
constraints, interpretability and usability, etc, which 
make the research of clustering algorithm to be 
challenging and magnetic. 

Many clustering algorithms were raised heretofore, 
among which are partition method, hierarchical 
method, density-based method, grid-based method, 

model-based method, etc. Density-based clustering 
algorithm is an important embranchment of cluster 
analysis with the advantages of capability of 
discovering clusters with arbitrary shape and 
insensitivity to noise data. The basic idea is using a 
local cluster criterion, in which clusters are defined as 
regions in the data space where the objects are dense, 
and clusters are separated from one another by low-
density regions. There are several concernful density-
based algorithms: DBSCAN, OPTICS, and 
KNNCLUST [2]-[4]. 

The key idea of DBSCAN is that for each object 
of a cluster, its neighborhood at a given radius must 
contain at least a minimum number of objects 
(MinPts), then cluster the density-connected objects. It 
is significantly effective in discovering clusters of 
arbitrary shape and can deal with noise. But the two 
fixed input parameters, ε and MinPts, weaken its 
ability of dealing with data sets with various densities. 
Instead of producing clusters explicitly, OPTICS 
creates an augmented ordering to represent the 
density-based clustering structure of a data set. It is 
equivalent to cluster a broad range of parameter 
settings, which overcomes the drawbacks of DBSCAN 
in a way. But the result of OPTICS is a tree of 
clustering structure, on which every node is a cluster. 
The sons of a node are subclusters of their parent node. 
In other words, OPTICS can’t attach an object exactly 
to a cluster. KNNCLUST method combined 
nonparametric k-nearest-neighbor and kernel density 
estimation, relies Bayes’ decision rule to cluster 
objects. Although this technique makes it possible to 
model clusters of different densities in data sets and 
identify the number of clusters automatically, it’s a 
“hard” algorithm which assigns object to one and only 
one cluster. It means that KNNCLUST can not 
identify noise. Furthermore, it is less suited for finding 
clusters with strange shapes. 

Almost all of the well-known clustering 
algorithms require input parameters which are hard to 
determine but have a significant influence on the 
clustering results. Furthermore, for many real data sets 
there is not a global parameter setting which describes 
the intrinsic clustering structure accurately. For 
density-based clustering, this problem embodies as 



that the intrinsic cluster structure of many real-data 
sets with various densities can not be characterized by 
global density parameters. Most of the widespread 
algorithms are not effective on handling practical 
datasets because of incapability of tackling the various 
densities. The various density problem has become 
one of the focuses for the density-based clustering 
research. In this paper, a new dispersive degree based 
algorithm combined with classification, called CDDC 
(Clustering using Dispersive Degree and 
Classification), is developed to tackle these situations. 
Enlightening by OPTICS and KNNCLUST, CDDC 
computes dispersive degree with KNN distance first, 
and produces an order(sequence of scanning) to depict 
the clustering information, then partitions the order 
into core and edge points, assigns the edge points to 
clusters applying KNN-kernel density estimation in 
the end. 

The rest of the paper is organized as follows. The 
new dispersive degree based algorithm combined with 
classification, CDDC, is given in Section 2. In Section 
3, its performance is evaluated by simulate 
experiments and compared to the results from 
DBSCAN, OPTICS and KNNCLUST. Finally, the 
work is summarized in Section 5. 

In order to facilitate the description of CDDC, 
simple 2-dimension points are used to represent 
objects in data space in this paper.  

2. CDDC clustering algorithm 

2.1. Density-based clustering 
Density-based clustering algorithms are built on 
definition of density and cluster which are given as 
follows. 
Definition 1. (Neighborhood of a point) Let D be a 
set of points. The neighborhood of a point p in D wrt. 
a given radius ε, denoted by Neighbors(p, ε), is 
defined by Neighbors(p , ε) = {q ∊ D | dist(p,q) ≤ε}, 
where dist(p,q) is the distance between p and q. 
Definition 2. (Density of a point) The density of a 
point p wrt. ε in D , denoted by Density(p, ε), is 
defined by Density(p, ε) = |Neighbors(p, ε)|. 
Definition 3. (Density-based cluster) A cluster C is a 
non-empty subset of D, in which the points have 
higher density and uniformity of density distribution. 
Definition 4. (Noise) Let C1,C2,…,Cn be n clusters in 
D, i=1,2,…,n. noise is defined by Noise={p ∊ D |∀i: 
p ∉ Ci}. 

It can be deduced that points in clusters should 
satisfy the following lemmas: 

Lemma 1. Points in clusters have higher density than 
noise points. Density(p , ε)> Density(q, ε) ,where p ∊
Ci, q ∊ {noises}. 
Lemma 2. The density difference between two points 
in same cluster is more distinct than that between one 
in cluster and the other in noise. |Density(o, ε)-
Density(p, ε)| < |Density(o, ε)-Density(q, ε)|, where o, 
p ∊ Ci, q ∊ noise. 
Definition 5. (outlier degree) The outlier degree of 
point p wrt. ε ,denoted by ODegree(p, ε), is defined by 
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where ∀i :qi ∊ Neighbor(p, ε). 
Depending on lemma 2, it is obvious that points in 

clusters have ODegree trending to 1.If the ODegree of 
a point is farther from 1, its probability to be a noise is 
higher. 

2.2. Frame of CDDC algorithm 
CDDC algorithm has four main steps: 

• Compute dispersive degree  
• Scan data 
• Divide scan order 
• Classify edge points 
These steps are introduced in the following 4 

subsections, respectively.  

2.3. Computing dispersive degree 
Definition 6. (KNN distance) Let p be a point in data 
set D, p’s KNN distance is the distance from p to its 
kth nearest neighbor, denoted by KNN-dist(p,k) . 

For a given k, the density of p is larger , its KNN-
dist is smaller. So KNN-dist represents density of p 
from another aspect. This idea of KNN-density is first 
introduced by Loftsgaarden and Quesenberry [5], 
which is redefined in this paper as follows: 
Definition 7. (KNN density) KNN density of p in 
D ,denoted by KNN-density , is the reciprocal of p’s 
KNN-dist. 

Outlier degree can be redefined with KNN-
density as: 
Definition 8. (K outlier degree) The K outlier degree 
of p, denoted by ODegree(p,k), is defined by 
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where ε’ = KNN-dist(p,k), ∀i : qi ∊ Neighbor(p, ε’), 
qi ≠ p. 
Definition 9. (Dispersive degree) The dispersive 
degree of p in data set D wrt. k, denoted by 
DDegree( p , k ) , is defined by DDegree( p , k ) = 
max(ODegree( p , k ) , (ODegree( p , k ))-1)-1. 



It is known from the definition above that the 
smaller the DDegree the more likely it is in a cluster; 
oppositely it is noise. 

In this step, CDDC finds k nearest neighbors of 
each point in data set, records the distances to every 
neighbor, and computes DDegree with KNN-dist of 
the points. This procedure is illustrated by Figure 1. 

 

Fig. 1: Procedure ComputeDDegree. 
 

The array Point.Neighbors[] preserves all the 
points except Point itself in the neighborhood of Point 
wrt. Point.knn_dist and their distances to Point. 
Because there may be more than one point have the 
same distance equal to Point.knn_dist from Point, the 
size of array may be larger than k-1. 

2.4. Scanning data 
CDDC creates an order of a data set, additionally 
sorting the dispersive degree for each point. It can be 
seen that this order is sufficient to extract the density-
based clusters. Figure 2 depicts the pseudo-code for 
the procedure ScanData. 

Function GetNextStart() gets the point with the 
smallest DDegree which has not been scanned as the 
start of a new scan process, and inserts it into 
SeedsQueue, in which points are ascending sorted 
according to DDegree. Function GetFirst() fetches the 
first element of SeedsQueue, and adds it to ScanOrder. 
Then all neighbors of the first point were checked. If 
the neighbor hasn’t been scanned and is not in 
SeedsQueue, it is added to ScanOrder. This repeats 
until ScanOrder is empty, when function 
GetNextStart() is called again to start a new loop. The 
procedure stops when all the points were add in 
ScanOrder. 

 
 

Fig. 2: Procedure ScanData. 

 
GetNextStart() insures that a scan process starts at 

a point in a cluster, which can be inferred from lemma 
1; and it is ensured by GetFirst() that a point, which is 
most likely to be in the same cluster with the last point 
in ScanOrder, will be added next in conformity to 
lemma 2. 

The scan order of a data set can be represented 
and understood graphically. The clustering structure 
can be seen if the dispersive degrees are plotted for 
each point in ScanOrder. Figure 3 depicts the 
DDegree-plot for a very simple data set (i.e. there are 
two uniform and one Gaussian distribution clusters 
with different densities in the data set). 

 
Fig. 3: Illustration of the ScanOrder. 

 

2.5. Dividing scanning order 
After carrying out accurate observations, we found 
that points in the regions with lower DDegree are the 
core points of clusters, which distribute in the vicinity 
of the centers. The points in high DDegree region 
mainly are edge of clusters or noise. According to this 
fact, CDDC divides the scan order of a data set into 
sets of core points and corresponding edge points. 

ComputeDDegree(DataSet, k) 
FORALL Point FROM DataSet DO 

Point.FindNeighbors(DataSet,k); 
Point.knn_dist = Point.Neighbors[k].dist; 

FORALL Point FROM DataSet DO 
FORALL Neighbor FROM Point.Neighbors[] 
DO 

Point.ODegree = Point.ODegree 
+Neighbor.knn_dist; 

Point.ODegree = Point.ODegree 
/(Point.knn_dist*Point.Neighbors[].size)

Point.DDegree = Max(Point.ODegree, 
          1/ Point.ODegree)-1 

END 

ScanData(DataSet, ScanOrder) 
WHILE DataSet.GetNextStart() <> NULL DO 

SeedsQueue.Insert(DataSet.GetNextStart); 
WHILE NOT SeedsQueue.Empty() DO 

CurrentPoint = SeedsQueue.GetFirst(); 
ScanOrder.Add(CurrentPoint); 
CurrentPoint.scanned = TRUE; 
FORALL Neighbor FROM 

CurrentPoint.Neighbors[] DO 
IF Neighbor.scanned = FALSE  

AND NOT 
SeedsQueue.Contain(Neighbor) 

SeedsQueue.Insert(Neighbor); 
END

dispersive
degree 

scan orderk=20 



Definition 10. (downgrade point) Let pi be a point in 
a ScanOrder S, i=1,2,…,n, n is the size of D. If the 
DDegree of pi is larger than pi+1, it’s a downgrade 
point, denoted by DP. DPs={pi ∊ S | ∀i: DDegree(pi) 
> DDegree(pi+1)} 
Definition 11. (contour point) Let pi be a point in the 
ScanOrder S, i=1,2,…,n, n is the size of D. The 
contour point of pi, denoted by CP(pi), is the first point 
after pi with the DDegree larger than it. CP(pi)=qj, 
where j=min{l>i | ∀l: DDegree(ol) > DDegree(pi)} 
Definition 12. (peak point) Let DPs be the set of 
downgrade points of a ScanOrder. Peak points denoted 
by PPs, are the subset of DPs, in which the DDegrees 
of the points are monotonically increasing and satisfy 
the following conditions: The DDegree of point must 
larger than a given threshold dt; the number of points 
between a downgrade point p and its contour point 
CP(p) must more than a given threshold mt. 
Definition 13. (dividing point) Let p be a peak point 
in the set of peak points of a ScanOrder S. If p has the 
largest Degree in the set, it is a dividing point of S. 

For instance, Figure 4 gives a fragment from a 
scan order of a data set. Point A, B, C, D and E are 
downgrade points. Point C’ and D’ are the contour 
points of C and D. D is a peak point but not C and E, 
because C’ is not so “far” apart from C(i.e. points 
between them is less than mt) and E is too “low”(i.e. 
DDegree of E is smaller than dt).Point D is the 
dividing point of the scan order. 

 

Fig. 4: Downgrade, contour, peak and dividing point. 
 

Figure 5 shows the procedure of DivideScanOrder. 
In this step, CDDC iterative splits current order into 
two half by function BinSplit() in the position of its 
dividing point. The first half is pushed into a stack of 
orders, and the last will be dealt with next as the 
current order until it can not be divided again, i.e. 
function FindPeaks() can not find any peaks of current 
order. The function Filter() will distinguishes between 

core points and edge points, with the cutoff point 
which is the contour point of current order’s last 
dividing point. When the stack is empty, the scan 
order is divided into sets of core points and edge 
points. 

 

Fig. 5: Procedure DivideScanOrder. 
 

2.6. Classifying edge points 
Each set of core points is considered as a cluster. The 
Points at the end of scan order are always having the 
highest dispersive degree in the data set. Therefore the 
last set of edge points in the tail of the scan order is 
considered to be not in any cluster but noise. Step 4 of 
CDDC is to classify edges to these clusters or noise. 
There are lots of classification algorithms, but we 
choose the KNN-kernel density-based method [6]. 
Because it is suited for various density data and can 
fully make use of the KNN information extracted by 
step 1. 

The KNN-kernel method was developed by 
Terrell and Scott [7]: 
Definition 13. (KNN-kernel density estimate) The 
KNN-kernel density estimate obtained at a object x in 
a N×d dimensional data set with kernel K is defined 
as  

1
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where Vx is the data volume adjusted to include the 
KNN objects, Hx is a scale vector[h1

x … hd
x] of Vx. 

The most common classification rules are based 
on Bayes’ decision rule:  

( | ) ( ) ( | ) ( ),     i i j jp x C p C p x C p C i j> ∀ ≠  
where p(x|Ci) is the class-conditional density function 
at x of each class Ci, and p(Ci) is the prior probability 
function. The class-conditional density function can be 
estimated by KNN-kernel defined above: 
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mt 

DivideScanOrder (ScanOrder, CoreSet, EdgeSet, dt, 
mt) 

Stack.push(ScanOrder); 
WHILE NOT Stack.Empty() DO 

IF CurrentOrder=NULL; 
CurrentOrder=Stack.pop(); 

CurrentOrder.FindPeaks(dt, mt); 
IF NOT CurrentOrder.Peaks.Empty 

CurrentOrder.BinSplit(); 
      ELSE 
          CurrentOrder.Filter(CoreSet,EdgeSet); 
          CurrentOrder=NULL; 

END
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where ni is the size of cluster Ci. Bayes’ KNN-kernel 
class-condition can be rewritten as: 

1 1(( ). ) ( ) (( ). ) ( )/ /
l i l j

l x i l x j
x C x Ci x j x

K x x p C K x x p C
nV nV

H H
∈ ∈

⎛ ⎞⎛ ⎞
− > −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑  

p(Ci) and p(Cj) are normally estimated by ni/N and 
nj/N. Then the expression above can be simplified: 
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For CDDC clustering algorithm, an edge point p 
is assigned to a cluster Ci (noise is denoted by C0 here) 
in order to maximize the priority function defined by 
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where the dissimilarity, dis(p,q) is defined by:  
( , ) ( , ) ( ) ( )dis p q dist p q DDegree p DDegree q= × −  

o is the point which is the most dissimilar k-nearest-
neighbor of p, K is triangular kernel, defined by 
K(z)=1-|z|, if |z|<1; K(z)=0,otherwise. 

2.7. Determining the parameters 
CDDC clustering algorithm needs only one parameter, 
k, the number of neighbors to depict the clustering of a 
data set. Some researches indicate that if k is too small, 
there will be too many modes; otherwise, too large, 
modes have disappeared [8]. But CDDC is roughly 
insensitive to the input parameter. Figure 6 shows the 
effects of different k on the DDegree-plot for the same 
data set used in figure 3.In the first plot a smaller k is 
used and larger for the second. For smaller k the 
DDegree-plot looks more jagged and larger k 
smoothen the curve. However, with this difference the 
clustering structure could be recognized in all these 
plots in the same way. It is a further advantage of 
CDDC compared to other methods that it’s not 
difficult to find a range of k for which clustering 
results are stable. CDDC can always get good results 
using values between 10 and 20. 

The other two parameters, mt and dt are easy to be 
chosen according to the DDegree-plot. The parameter 
mt is used to filter the clusters containing points less 
than it, which users do not care about. And the order 
with a diving point lower than dt will not be divide 
anymore because the DDegree of the points is small 
enough to be core points of a cluster. So both the 
parameter can be fixed visually and interactively. 

 

Fig. 6: Effects of k setting on the scan order. 
 

2.8. Computational complexity 
Let n be the size of a data set, including m clusters and  
l edge points, k be the number of neighbors. Then the 
time complexity would be O(n2) for computing 
DDegree, O(n) for producing ScanOrder, about O((m-
1)n) for dividing ScanOrder and O(lkm) for 
classification. Hence the total time complexity is 
O(n2+mn+lkm).Because m ,l and k are far less than n 
in general, the CDDC’s runtime would be O(n2). If a 
tree-based index such as the R*-tree [9] or the X-tree 
[10] can be used, the run-time is reduced to O(nlogn). 

3. Performance evaluation 
In this section, we evaluate the performance of CDDC. 
We compare it with the performance of DBSCAN, 
OPTICS and KNNCLUST, because the first one is an 
acknowledged classical density-based clustering 
algorithm, and the other two are designed to clustering 
data set with various densities. We have implemented 
CDDC, DBSCAN and OPTICS in java with out any 
index. All experiments have been run on the 
workstation with Pentium D 2.8G CPU, 512MB 
memory and Windows XP pro sp2. 

To compare these algorithms in terms of 
effectivity, we use two synthetic sample data sets 
which are depicted in figure 7. They have clusters of 
different shape, size, density, and orientation, as well 
as random noise. Note that DS2 was obtained from 
Chameleon [11], whereas we synthetically generated 
the remaining data set.  

DDegree

ScanOrderK = 4 

DDegree

K = 40 ScanOrder



Fig. 7: The two data sets used in experiments. 
 

Precision, recall and F-measure are common 
measurements used in information retrieval for 
evaluation [12]. Their comparison of DBSCAN, 
OPTICS and CDDC is shown in figure 8. Because the 
KNNCLUST can not find clusters of strange shape 
and gives poor results in our experiment, we omit its 
items. The ideal clusters are Clockwise direction 
marked by C1-C9. Parameters of DBSCAN is fine 
tuned to find all the ideal clusters (Eps = 11, MinPts = 
4), but in this case, C8 and C9 (the triangles) are 
recognized as a single cluster and lots of noise point 
are clustered mistakenly. OPTICS can not tell when to 
stop dividing the a cluster, so we artificial select the 
“best” result (i.e. most similar to the ideal clusters) 
with the parameters Eps = 22 and MinPts = 20, ξ = 
0.01. Parameters of CDDC , k, mt and dt are set to 20, 
250 and 1.097. The two thresholds are determined 
according to the DDegree-plot. 

 
 
 
 
 
 

Fig. 8: Comparison of DBSCAN, OPTICS and CDDC. 
 

Since there is no common internal quality 
evaluations for density-based clustering algorithms, 
we evaluate the results on DS2 by visual inspection. 
The comparison is depicted in figure 9. 

Obviously, CDDC gets the best results of all. 
 
 
 
 
 
 

DS1:7118 points 

DS2:8000 points 
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Fig. 9: Clusters found by DBSCAN. 

Fig. 10: Clusters found by OPTICS. 

Fig. 11: Clusters found by CDDC. 
 

4. Conclusions 
Many density-based clustering algorithms such as 
DBSCAN, suffer from the problem of clusters with 
different densities. This is not the only purpose for our 
new proposed algorithm, CDDC, making use of 
dispersive degree and kernel density estimation based 
on KNN. CDDC need only one parameter, k, the 
number of neighbors, to discover the essential 
clustering structure, according to which mt and dt can 
be determined easily to produce useful clusters. It is 
suited for finding arbitrary shape and density clusters 
and noise. Furthermore it has the same time 
complexity as DBSCAN. In conclusion, CDDC is a 

good method to cluster data set where the clusters are 
very different in densities. 
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