
A Dispersive Degree Based Clustering Algorithm
Combined with Classification
Xianchao Zhang Shimin Shan Zhihang Yu He Jiang

School of Software, Dalian University of Technology, Dalian 116620, P. R. China

Abstract
The various-density problem has become one of the
focuses in density based clustering research. A novel
dispersive degree based algorithm combined with
classification, called CDDC, is presented in this paper
to remove the hurdle. In CDDC, a sequence is
established for depicting the data distribution,
discriminating cores and classifying edges. Clusters
are discovered by utilizing the revealed information.
Several experiments are performed and the results
suggest that CDDC is effective in handling the
various-density problem and is more efficient than the
well-known algorithms such as DBSCAN, OPTICS
and KNNCLUST.

Keywords: Clustering analysis, Various-density,
Dispersive degree, Data mining

1. Introduction
One of the primary data mining tasks is clustering
analysis. The goal of a clustering algorithm is to group
the objects of a database into a set of meaningful
subclasses (clusters). A clustering algorithm can be
used either as a stand-alone tool to get insight into the
distribution of a data set, or as a preprocessing step for
other algorithms which operate on the detected
clusters. Applications of clustering are, for instance,
computational analysis, pattern recognition, medical
diagnosis, web retrieval. For each of these applications
specialties are requested [1], such as scalability, ability
to deal with different types of attributes, ability to
handle dynamic data, discovery of clusters with
arbitrary shape, minimal requirements for domain
knowledge, able to deal with noise and outliers,
insensitive to order of input records, high
dimensionality, incorporation of user-specified
constraints, interpretability and usability, etc, which
make the research of clustering algorithm to be
challenging and magnetic.

Many clustering algorithms were raised heretofore,
among which are partition method, hierarchical
method, density-based method, grid-based method,

model-based method, etc. Density-based clustering
algorithm is an important embranchment of cluster
analysis with the advantages of capability of
discovering clusters with arbitrary shape and
insensitivity to noise data. The basic idea is using a
local cluster criterion, in which clusters are defined as
regions in the data space where the objects are dense,
and clusters are separated from one another by low-
density regions. There are several concernful density-
based algorithms: DBSCAN, OPTICS, and
KNNCLUST [2]-[4].

The key idea of DBSCAN is that for each object
of a cluster, its neighborhood at a given radius must
contain at least a minimum number of objects
(MinPts), then cluster the density-connected objects. It
is significantly effective in discovering clusters of
arbitrary shape and can deal with noise. But the two
fixed input parameters, ε and MinPts, weaken its
ability of dealing with data sets with various densities.
Instead of producing clusters explicitly, OPTICS
creates an augmented ordering to represent the
density-based clustering structure of a data set. It is
equivalent to cluster a broad range of parameter
settings, which overcomes the drawbacks of DBSCAN
in a way. But the result of OPTICS is a tree of
clustering structure, on which every node is a cluster.
The sons of a node are subclusters of their parent node.
In other words, OPTICS can’t attach an object exactly
to a cluster. KNNCLUST method combined
nonparametric k-nearest-neighbor and kernel density
estimation, relies Bayes’ decision rule to cluster
objects. Although this technique makes it possible to
model clusters of different densities in data sets and
identify the number of clusters automatically, it’s a
“hard” algorithm which assigns object to one and only
one cluster. It means that KNNCLUST can not
identify noise. Furthermore, it is less suited for finding
clusters with strange shapes.

Almost all of the well-known clustering
algorithms require input parameters which are hard to
determine but have a significant influence on the
clustering results. Furthermore, for many real data sets
there is not a global parameter setting which describes
the intrinsic clustering structure accurately. For
density-based clustering, this problem embodies as

that the intrinsic cluster structure of many real-data
sets with various densities can not be characterized by
global density parameters. Most of the widespread
algorithms are not effective on handling practical
datasets because of incapability of tackling the various
densities. The various density problem has become
one of the focuses for the density-based clustering
research. In this paper, a new dispersive degree based
algorithm combined with classification, called CDDC
(Clustering using Dispersive Degree and
Classification), is developed to tackle these situations.
Enlightening by OPTICS and KNNCLUST, CDDC
computes dispersive degree with KNN distance first,
and produces an order(sequence of scanning) to depict
the clustering information, then partitions the order
into core and edge points, assigns the edge points to
clusters applying KNN-kernel density estimation in
the end.

The rest of the paper is organized as follows. The
new dispersive degree based algorithm combined with
classification, CDDC, is given in Section 2. In Section
3, its performance is evaluated by simulate
experiments and compared to the results from
DBSCAN, OPTICS and KNNCLUST. Finally, the
work is summarized in Section 5.

In order to facilitate the description of CDDC,
simple 2-dimension points are used to represent
objects in data space in this paper.

2. CDDC clustering algorithm

2.1. Density-based clustering
Density-based clustering algorithms are built on
definition of density and cluster which are given as
follows.
Definition 1. (Neighborhood of a point) Let D be a
set of points. The neighborhood of a point p in D wrt.
a given radius ε, denoted by Neighbors(p, ε), is
defined by Neighbors(p , ε) = {q ∊ D | dist(p,q) ≤ε},
where dist(p,q) is the distance between p and q.
Definition 2. (Density of a point) The density of a
point p wrt. ε in D , denoted by Density(p, ε), is
defined by Density(p, ε) = |Neighbors(p, ε)|.
Definition 3. (Density-based cluster) A cluster C is a
non-empty subset of D, in which the points have
higher density and uniformity of density distribution.
Definition 4. (Noise) Let C1,C2,…,Cn be n clusters in
D, i=1,2,…,n. noise is defined by Noise={p ∊ D |∀i:
p ∉ Ci}.

It can be deduced that points in clusters should
satisfy the following lemmas:

Lemma 1. Points in clusters have higher density than
noise points. Density(p , ε)> Density(q, ε) ,where p ∊
Ci, q ∊ {noises}.
Lemma 2. The density difference between two points
in same cluster is more distinct than that between one
in cluster and the other in noise. |Density(o, ε)-
Density(p, ε)| < |Density(o, ε)-Density(q, ε)|, where o,
p ∊ Ci, q ∊ noise.
Definition 5. (outlier degree) The outlier degree of
point p wrt. ε ,denoted by ODegree(p, ε), is defined by

(,)
(,)

(,) (,)
1

i iq

Density p
ODegree p

Neighbors p Density q
ε

ε
ε ε

= ∑

where ∀i :qi ∊ Neighbor(p, ε).
Depending on lemma 2, it is obvious that points in

clusters have ODegree trending to 1.If the ODegree of
a point is farther from 1, its probability to be a noise is
higher.

2.2. Frame of CDDC algorithm
CDDC algorithm has four main steps:

• Compute dispersive degree
• Scan data
• Divide scan order
• Classify edge points
These steps are introduced in the following 4

subsections, respectively.

2.3. Computing dispersive degree
Definition 6. (KNN distance) Let p be a point in data
set D, p’s KNN distance is the distance from p to its
kth nearest neighbor, denoted by KNN-dist(p,k) .

For a given k, the density of p is larger , its KNN-
dist is smaller. So KNN-dist represents density of p
from another aspect. This idea of KNN-density is first
introduced by Loftsgaarden and Quesenberry [5],
which is redefined in this paper as follows:
Definition 7. (KNN density) KNN density of p in
D ,denoted by KNN-density , is the reciprocal of p’s
KNN-dist.

Outlier degree can be redefined with KNN-
density as:
Definition 8. (K outlier degree) The K outlier degree
of p, denoted by ODegree(p,k), is defined by

(,)
(,)

(, ') (,)
1

1 i iq

Density p k
ODegree p k

Neighbors p Density q kε
=

− ∑

where ε’ = KNN-dist(p,k), ∀i : qi ∊ Neighbor(p, ε’),
qi ≠ p.
Definition 9. (Dispersive degree) The dispersive
degree of p in data set D wrt. k, denoted by
DDegree(p , k) , is defined by DDegree(p , k) =
max(ODegree(p , k) , (ODegree(p , k))-1)-1.

It is known from the definition above that the
smaller the DDegree the more likely it is in a cluster;
oppositely it is noise.

In this step, CDDC finds k nearest neighbors of
each point in data set, records the distances to every
neighbor, and computes DDegree with KNN-dist of
the points. This procedure is illustrated by Figure 1.

Fig. 1: Procedure ComputeDDegree.

The array Point.Neighbors[] preserves all the
points except Point itself in the neighborhood of Point
wrt. Point.knn_dist and their distances to Point.
Because there may be more than one point have the
same distance equal to Point.knn_dist from Point, the
size of array may be larger than k-1.

2.4. Scanning data
CDDC creates an order of a data set, additionally
sorting the dispersive degree for each point. It can be
seen that this order is sufficient to extract the density-
based clusters. Figure 2 depicts the pseudo-code for
the procedure ScanData.

Function GetNextStart() gets the point with the
smallest DDegree which has not been scanned as the
start of a new scan process, and inserts it into
SeedsQueue, in which points are ascending sorted
according to DDegree. Function GetFirst() fetches the
first element of SeedsQueue, and adds it to ScanOrder.
Then all neighbors of the first point were checked. If
the neighbor hasn’t been scanned and is not in
SeedsQueue, it is added to ScanOrder. This repeats
until ScanOrder is empty, when function
GetNextStart() is called again to start a new loop. The
procedure stops when all the points were add in
ScanOrder.

Fig. 2: Procedure ScanData.

GetNextStart() insures that a scan process starts at

a point in a cluster, which can be inferred from lemma
1; and it is ensured by GetFirst() that a point, which is
most likely to be in the same cluster with the last point
in ScanOrder, will be added next in conformity to
lemma 2.

The scan order of a data set can be represented
and understood graphically. The clustering structure
can be seen if the dispersive degrees are plotted for
each point in ScanOrder. Figure 3 depicts the
DDegree-plot for a very simple data set (i.e. there are
two uniform and one Gaussian distribution clusters
with different densities in the data set).

Fig. 3: Illustration of the ScanOrder.

2.5. Dividing scanning order
After carrying out accurate observations, we found
that points in the regions with lower DDegree are the
core points of clusters, which distribute in the vicinity
of the centers. The points in high DDegree region
mainly are edge of clusters or noise. According to this
fact, CDDC divides the scan order of a data set into
sets of core points and corresponding edge points.

ComputeDDegree(DataSet, k)
FORALL Point FROM DataSet DO

Point.FindNeighbors(DataSet,k);
Point.knn_dist = Point.Neighbors[k].dist;

FORALL Point FROM DataSet DO
FORALL Neighbor FROM Point.Neighbors[]
DO

Point.ODegree = Point.ODegree
+Neighbor.knn_dist;

Point.ODegree = Point.ODegree
/(Point.knn_dist*Point.Neighbors[].size)

Point.DDegree = Max(Point.ODegree,
 1/ Point.ODegree)-1

END

ScanData(DataSet, ScanOrder)
WHILE DataSet.GetNextStart() <> NULL DO

SeedsQueue.Insert(DataSet.GetNextStart);
WHILE NOT SeedsQueue.Empty() DO

CurrentPoint = SeedsQueue.GetFirst();
ScanOrder.Add(CurrentPoint);
CurrentPoint.scanned = TRUE;
FORALL Neighbor FROM

CurrentPoint.Neighbors[] DO
IF Neighbor.scanned = FALSE

AND NOT
SeedsQueue.Contain(Neighbor)

SeedsQueue.Insert(Neighbor);
END

dispersive
degree

scan orderk=20

Definition 10. (downgrade point) Let pi be a point in
a ScanOrder S, i=1,2,…,n, n is the size of D. If the
DDegree of pi is larger than pi+1, it’s a downgrade
point, denoted by DP. DPs={pi ∊ S | ∀i: DDegree(pi)
> DDegree(pi+1)}
Definition 11. (contour point) Let pi be a point in the
ScanOrder S, i=1,2,…,n, n is the size of D. The
contour point of pi, denoted by CP(pi), is the first point
after pi with the DDegree larger than it. CP(pi)=qj,
where j=min{l>i | ∀l: DDegree(ol) > DDegree(pi)}
Definition 12. (peak point) Let DPs be the set of
downgrade points of a ScanOrder. Peak points denoted
by PPs, are the subset of DPs, in which the DDegrees
of the points are monotonically increasing and satisfy
the following conditions: The DDegree of point must
larger than a given threshold dt; the number of points
between a downgrade point p and its contour point
CP(p) must more than a given threshold mt.
Definition 13. (dividing point) Let p be a peak point
in the set of peak points of a ScanOrder S. If p has the
largest Degree in the set, it is a dividing point of S.

For instance, Figure 4 gives a fragment from a
scan order of a data set. Point A, B, C, D and E are
downgrade points. Point C’ and D’ are the contour
points of C and D. D is a peak point but not C and E,
because C’ is not so “far” apart from C(i.e. points
between them is less than mt) and E is too “low”(i.e.
DDegree of E is smaller than dt).Point D is the
dividing point of the scan order.

Fig. 4: Downgrade, contour, peak and dividing point.

Figure 5 shows the procedure of DivideScanOrder.
In this step, CDDC iterative splits current order into
two half by function BinSplit() in the position of its
dividing point. The first half is pushed into a stack of
orders, and the last will be dealt with next as the
current order until it can not be divided again, i.e.
function FindPeaks() can not find any peaks of current
order. The function Filter() will distinguishes between

core points and edge points, with the cutoff point
which is the contour point of current order’s last
dividing point. When the stack is empty, the scan
order is divided into sets of core points and edge
points.

Fig. 5: Procedure DivideScanOrder.

2.6. Classifying edge points
Each set of core points is considered as a cluster. The
Points at the end of scan order are always having the
highest dispersive degree in the data set. Therefore the
last set of edge points in the tail of the scan order is
considered to be not in any cluster but noise. Step 4 of
CDDC is to classify edges to these clusters or noise.
There are lots of classification algorithms, but we
choose the KNN-kernel density-based method [6].
Because it is suited for various density data and can
fully make use of the KNN information extracted by
step 1.

The KNN-kernel method was developed by
Terrell and Scott [7]:
Definition 13. (KNN-kernel density estimate) The
KNN-kernel density estimate obtained at a object x in
a N×d dimensional data set with kernel K is defined
as

1

1ˆ () (().)/
n

i x
ix

f x K x x
NV

H
=

= −∑

where Vx is the data volume adjusted to include the
KNN objects, Hx is a scale vector[h1

x … hd
x] of Vx.

The most common classification rules are based
on Bayes’ decision rule:

(|) () (|) (), i i j jp x C p C p x C p C i j> ∀ ≠
where p(x|Ci) is the class-conditional density function
at x of each class Ci, and p(Ci) is the prior probability
function. The class-conditional density function can be
estimated by KNN-kernel defined above:

B A

C
C’

D
D’

E

dt

mt

DivideScanOrder (ScanOrder, CoreSet, EdgeSet, dt,
mt)

Stack.push(ScanOrder);
WHILE NOT Stack.Empty() DO

IF CurrentOrder=NULL;
CurrentOrder=Stack.pop();

CurrentOrder.FindPeaks(dt, mt);
IF NOT CurrentOrder.Peaks.Empty

CurrentOrder.BinSplit();
 ELSE
 CurrentOrder.Filter(CoreSet,EdgeSet);
 CurrentOrder=NULL;

END

1ˆ (|) (().)/
j i

i j x
x Ci x

p x C K x x
n V

H
∈

= −∑

where ni is the size of cluster Ci. Bayes’ KNN-kernel
class-condition can be rewritten as:

1 1(().) () (().) ()/ /
l i l j

l x i l x j
x C x Ci x j x

K x x p C K x x p C
nV nV

H H
∈ ∈

⎛ ⎞⎛ ⎞
− > −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∑ ∑

p(Ci) and p(Cj) are normally estimated by ni/N and
nj/N. Then the expression above can be simplified:

(()./) (()./)
l i l j

l x l x
x C x C

K x x H K x x H
∈ ∈

− > −∑ ∑

For CDDC clustering algorithm, an edge point p
is assigned to a cluster Ci (noise is denoted by C0 here)
in order to maximize the priority function defined by

(,)Pr ()
(,)

l

l
i

q Ci

dis p qob C K
dis p o∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑

where the dissimilarity, dis(p,q) is defined by:
(,) (,) () ()dis p q dist p q DDegree p DDegree q= × −

o is the point which is the most dissimilar k-nearest-
neighbor of p, K is triangular kernel, defined by
K(z)=1-|z|, if |z|<1; K(z)=0,otherwise.

2.7. Determining the parameters
CDDC clustering algorithm needs only one parameter,
k, the number of neighbors to depict the clustering of a
data set. Some researches indicate that if k is too small,
there will be too many modes; otherwise, too large,
modes have disappeared [8]. But CDDC is roughly
insensitive to the input parameter. Figure 6 shows the
effects of different k on the DDegree-plot for the same
data set used in figure 3.In the first plot a smaller k is
used and larger for the second. For smaller k the
DDegree-plot looks more jagged and larger k
smoothen the curve. However, with this difference the
clustering structure could be recognized in all these
plots in the same way. It is a further advantage of
CDDC compared to other methods that it’s not
difficult to find a range of k for which clustering
results are stable. CDDC can always get good results
using values between 10 and 20.

The other two parameters, mt and dt are easy to be
chosen according to the DDegree-plot. The parameter
mt is used to filter the clusters containing points less
than it, which users do not care about. And the order
with a diving point lower than dt will not be divide
anymore because the DDegree of the points is small
enough to be core points of a cluster. So both the
parameter can be fixed visually and interactively.

Fig. 6: Effects of k setting on the scan order.

2.8. Computational complexity
Let n be the size of a data set, including m clusters and
l edge points, k be the number of neighbors. Then the
time complexity would be O(n2) for computing
DDegree, O(n) for producing ScanOrder, about O((m-
1)n) for dividing ScanOrder and O(lkm) for
classification. Hence the total time complexity is
O(n2+mn+lkm).Because m ,l and k are far less than n
in general, the CDDC’s runtime would be O(n2). If a
tree-based index such as the R*-tree [9] or the X-tree
[10] can be used, the run-time is reduced to O(nlogn).

3. Performance evaluation
In this section, we evaluate the performance of CDDC.
We compare it with the performance of DBSCAN,
OPTICS and KNNCLUST, because the first one is an
acknowledged classical density-based clustering
algorithm, and the other two are designed to clustering
data set with various densities. We have implemented
CDDC, DBSCAN and OPTICS in java with out any
index. All experiments have been run on the
workstation with Pentium D 2.8G CPU, 512MB
memory and Windows XP pro sp2.

To compare these algorithms in terms of
effectivity, we use two synthetic sample data sets
which are depicted in figure 7. They have clusters of
different shape, size, density, and orientation, as well
as random noise. Note that DS2 was obtained from
Chameleon [11], whereas we synthetically generated
the remaining data set.

DDegree

ScanOrderK = 4

DDegree

K = 40 ScanOrder

Fig. 7: The two data sets used in experiments.

Precision, recall and F-measure are common
measurements used in information retrieval for
evaluation [12]. Their comparison of DBSCAN,
OPTICS and CDDC is shown in figure 8. Because the
KNNCLUST can not find clusters of strange shape
and gives poor results in our experiment, we omit its
items. The ideal clusters are Clockwise direction
marked by C1-C9. Parameters of DBSCAN is fine
tuned to find all the ideal clusters (Eps = 11, MinPts =
4), but in this case, C8 and C9 (the triangles) are
recognized as a single cluster and lots of noise point
are clustered mistakenly. OPTICS can not tell when to
stop dividing the a cluster, so we artificial select the
“best” result (i.e. most similar to the ideal clusters)
with the parameters Eps = 22 and MinPts = 20, ξ =
0.01. Parameters of CDDC , k, mt and dt are set to 20,
250 and 1.097. The two thresholds are determined
according to the DDegree-plot.

Fig. 8: Comparison of DBSCAN, OPTICS and CDDC.

Since there is no common internal quality
evaluations for density-based clustering algorithms,
we evaluate the results on DS2 by visual inspection.
The comparison is depicted in figure 9.

Obviously, CDDC gets the best results of all.

DS1:7118 points

DS2:8000 points

0 1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

is
io

n

Cluster ID

 DBSCAN
 OPTICS
 CDDC

0 1 2 3 4 5 6 7 8 9 10

0.95

0.96

0.97

0.98

0.99

1.00

R
ec

al
l

Cluster ID

 DBSCAN
 OPTICS
 CDDC

0 1 2 3 4 5 6 7 8 9 10
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

F-
m

ea
su

re

Cluster ID

 DBSCAN
 OPTICS
 CDDC

Fig. 9: Clusters found by DBSCAN.

Fig. 10: Clusters found by OPTICS.

Fig. 11: Clusters found by CDDC.

4. Conclusions
Many density-based clustering algorithms such as
DBSCAN, suffer from the problem of clusters with
different densities. This is not the only purpose for our
new proposed algorithm, CDDC, making use of
dispersive degree and kernel density estimation based
on KNN. CDDC need only one parameter, k, the
number of neighbors, to discover the essential
clustering structure, according to which mt and dt can
be determined easily to produce useful clusters. It is
suited for finding arbitrary shape and density clusters
and noise. Furthermore it has the same time
complexity as DBSCAN. In conclusion, CDDC is a

good method to cluster data set where the clusters are
very different in densities.

Acknowledgement
This work is partially supported by National Nature
Science Foundation of China (Grant No. 60673066).

References
[1] J.W. Han, M. Kambr, Data Mining Concepts and

Techniques, Morgan Kaufmann Publishers, 2001.
[2] M. Ester, HP. Kriegel, J. Sander, A density-

based algorithm for discovering clusters in large
spatial databases with noise. Proceedings of the
Knowledge Discovery and Data Mining, pp. 226-
231, 1996.

[3] M. Ankerst, M. Breunig, H.P. Kriegel and J.
Sander, OPTICS: Ordering Points to Identify the
Clustering Structure. Proc. ACM SIGMOD’99
Int. Conf. on Management of Data, pp. 49-60,
1996.

[4] T.N. Tran, R. Wehrens, Lutgarde M.C.Buydens,
KNN-kernel density-based clustering for high-
dimensional. Computational Statistics & Data
Analysis, 51: 513-525, 2006.

[5] D.O. Loftsgaarden, C.P. Quesenberry, A
nonparametric estimation of a multivariate
density function. Ann.Math.Statist 36: 1049-
1051, 1965.

[6] A. Webb, Statistical Pattern Recognition, Wiley,
Malvern, 2002.

[7] G.R. Terrell, D.W. Scott, Variable kernel density
estimation. Ann. Statist. 20: 1236-1265, 1992.

[8] http://www.ficcs.org/meetings/ficcs2/ficcs2.html.
http://web.maths.unsw.edu.au/~tduong/research/i
ndex.html.

[9] N. Beckmann, H.P. Kriegel, R. Schneider and B.
Seeger, The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. Proc.
ACM SIGMOD Int. Conf. on Management of
Data, pp. 322-331, 1990.

[10] S. Berchthold, D. Keim, H.P. Kriegel, The X-
Tree: An Index Structure for High-Dimensional
Data. 22nd Conf. on Very Large Data Bases, pp.
28-39, 1996.

[11] G. Karypis, E.H. Han, Vipin Kumar, IEEE
Computer: Special Issue on Data Analysis and
Mining, 32: 68-75, 1999.

[12] D. Crabtree, P.Andreae, X. Gao. QC4-A
Clustering Evaluation Method. Proc. of PAKDD,
pp. 59-70, 2007.

