
A New Method for Constructing Radial Basis
Function Neural Networks

Jinyan Sun Xizhao Wang

Machine Learning Center, Faculty of Mathematics and Computer Science, Hebei University, Baoding 071002, P.R.
China

Abstract
Ignoring the samples far away from the training
samples, our study team gives a new norm-based
derivative process of localized generalization error
boundary. Enlightened by the above research, this
paper proposes a new method to construct radial basis
function neural networks, which minimizes the sum of
training error and stochastic sensitivity. Experimental
results show that the new method can lead to simple
and better network architecture.

Keywords: Radial basis function neural network,
Norm, Training error; Sensitivity

1. Introduction
In pattern classification problems, generalization
capability is a criterion of appraising classifier and we
always hope a trained classifier can recognize unseen
samples correctly. The samples, which are located far
away the hidden neuron centers, have insignificant
effect in the learning of hidden neuron centers [2]-[4].
Wing W.Y.NG, et al present localized generalization
error model and deduce an upper boundary of
localized generalization error [1]. They ignore the
samples far away from the training samples and
compute generalization error within a neighborhood of
training samples based on mean square error as
follows:

() ()() ()
2

x x x x
Q

SM S
R f F p dθ= −∫

where x is input vector in the neighborhood QS ,
which is the union of all neighborhoods of training
samples.

To further simplify the formula of localized
generalization error model (LGEM) and get a smaller
upper bound of localized generalization error (LGE),
our study team renewedly deduces the LGE based on
norm to compute the difference between the trained
output function ()xfθ and the target function ()xF ,

i.e. () () ()x x x x
Q

gen S
R f F p dθ= −∫ , where ()xp is

the unknown probability density function of the input
x .

During research on LGEM, we find that the upper
bound of LGE can be confirmed by training error and
sensitivity. Training error can reflect how well the
classifier study from training samples. Neural network
stochastic sensitivity is useful to assess a trained
neural network [5]. In [6], the experiments show that
the sensitivity measure would be correlated to the
testing error of unseen samples.

In this paper, we give a criterion function
assessing a trained Radial Basis Function Neural
Network (RBFNN) classifier, which is the sum of
training error and stochastic sensitivity. And then, this
paper minimizes the criterion function, i.e. the sum of
training error and sensitivity (MTAS), to ascertain the
appropriate RBFNN architecture. The new method
MTAS considers the generalization capability of
RBFNN and it is unnecessary to choose the number of
hidden neuron centers in advance.

2. The norm-based localized
generalization error model

Given a training dataset D containing N training

samples, (){ } 1
x , y

N
i i i

D
=

= , we compute the
generalization error of unseen samples located in a
neighborhood QS of training samples based on norm
as follows:

() () ()x x x x
Q

gen S
R f F p dθ= −∫

where

()

{ }
1

1

x

x | x x x; 1, ,

N

Q Q i
i
N

i l
i

S S

x Q l n

=

=

=

 = = + Δ Δ ≤ ∀ = K

U

U

, Q is a given non-negative real number and n denotes
the number of input features.

The following is the derivative process of the
norm-based localized generalization error model
(NLGEM) boundary.

() () ()

() () ()

() () () ()
()

(x)
1

(x) (x)
1

(x)

x x x x

 x x x x

x
 = x x* x x x

x x

Q

Q i

Q i Q i

Q i

gen S

N

S
i

N

S S
i

S

R f F p d

f F p d

p
p d f F d

p d

θ

θ

θ

=

=

= −

≤ −

−

∫

∑∫

∑∫ ∫ ∫
 Here, we define

() () ()' '

(x)
x x x x , x (x)

Q i
i i Q i i Q iS

C p d p S S= = Δ ∈∫

() ()
(x)

x
x

Q iS
i

p
p

C
=

Because of ()(x)(x)
x x 1

Q i
Q i

SS
p d =∫ ,

()(x) x
Q iSp can be considered as the probability

density function of x in (x)Q iS .

() () ()(x)(x)
1

* x x x x
Q i

Q i

N

i SS
i

C f F p dθ
=

= −∑ ∫

Here, we adjust ()xQ iSΔ to keep the relation,

()1iC
N
ξ ξ≤ ≥ , ξ is a control parameter of

()xQ iSΔ .
Then, we have the following derivation:

() () ()

() ()

() () ()

(x)(x)
1

1

(x)(x)
1

x x x x

x x

x x x x

Q i
Q i

Q i
Q i

N

i SS
i

N

i i
i

N

i SS
i

f f p d
N

f F
N

F F p d
N

θ θ

θ

ξ

ξ

ξ

=

=

=

≤ −

 + −

 + −

∑∫

∑

∑∫

During adjust ()xQ iSΔ , i.e. Q , we try to

ensure that the samples in the same Q neighborhood
belong to the same class, i.e. they have the same class
label. So, we have

() () ()(x)(x)
x x x x 0

Q i
Q i

i SS
F F p d− =∫

Then

() ()

() () ()

1

(x)(x)
1

x x

x x x x
Q i

Q i

N

i i
i

N

i SS
i

f F
N

f f p d
N

θ

θ θ

ξ

ξ
=

=

= −

 + −

∑

∑∫
*
genR= (1)

Remark 1: Q can be considered as the maximum
value of input perturbation. The perturbed input

vectors in every neighborhood would be the unseen
samples outside the training samples.

Remark 2: We adjust Q to make the samples in
a neighborhood belong to the same class. The target
output difference between training samples and their
perturbed samples equals to zero. So, the upper
boundary of LGE is predigested.

Remark 3: For a given Q , *
genR refers to unseen

samples, which locate within the neighborhood of
training samples and are similar to the training
samples. *

genR can denote the generalization capability
of a trained classifier according to its value.

3. Further derivation about
boundary of LGE

Because ξ exists in the two components, for a
appropriate Q , we can ignore ξ and pay attention to
the following formula:

() ()

() () ()

()

1

(x)(x)
1

1 x x

1 x x x x
Q i

Q i

Q

N

TS i i
i

N

i SS
i

emp S

R f F
N

f f p d
N

R E y

θ

θ θ

=

=

= −

 + −

 = + Δ

∑

∑∫

where the first component is training error and the
second component is stochastic sensitivity, which
measures the value of the network output perturbation
with respect to input perturbations.

Here, we consider a L class− classification
problem and the derivations are as follows:

If we adopt 1-norm, we have the following
derivation:

1 1
i 1

1 1 1

1
(x) (x) ()

1
(x) (x) ()

Q

Q

N

TS i i S

N L L

k i k i S k
i k k

R f F E y
N

f F E y
N

θ

θ

=

= = =

= − + Δ

 = − + Δ

∑

∑∑ ∑
(2)

If we adopt 2-norm, we have another derivation:

() ()

2 2
1

2 2

1 1 1

1
(x) (x) ()

1
(x) (x)

Q

Q

N

TS i i S
i

N L L

k i k i S k
i k k

R f F E y
N

f F E y
N

θ

θ

=

= = =

= − + Δ

= − + Δ
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑
(3)

Moreover, different norm can be used in the
derivative process synchronously. For example, the
first component adopts 1-norm while the second
adopts 2-norm. Other norm can be adopted in the
above formula, too.

4. The method for constructing
RBFNN

4.1. Criterion function
Enlightened by the above research and the results in
(1), we know the boundary of LGE is mainly affected
by the two components, training error and stochastic
sensitivity, whatever norm is adopted as (2) or (3). In
this paper, we use mean square error to compute the
training error and present a criterion function assessing
a trained classifier. For all the samples within the QS ,
we have the following equation,

()()
() ()()

() ()()
i 1

1 1 1

2

2 2

2 2

1

1

(x) (x)

(x) (x)

Q

Q

Q

S

N

S

N L L

S
i k k

emp

i i

k i k i k

E

E
N

E
N

TS R y

f F y

f F y

θ

θ

=

= = =

+

= +

= + Δ

= − Δ

− Δ

∑

∑∑ ∑

 (4)

In equation (4), the first component is the
mean square error of training samples and the
second component is stochastic sensitivity, which
is the expectation of square of output
perturbations with respect to input perturbations.
Then the criterion function will be applied to
ascertain the appropriate number of hidden
neuron centers and construct RBFNN.

4.2. The RBFNN stochastic
sensitivity

The k-th output of RBFNN with multiple outputs
could be described as:

()
()2

1
2

1 j

2
1 j

x exp
2

exp
2

n

l jlM
l

k kj
j

M
j

kj
j

x u
f w

v

s
w

v

=

=

=

⎡ ⎤−⎢ ⎥
⎢ ⎥=

−⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
 = ⎜ ⎟⎜ ⎟−⎝ ⎠

∑
∑

∑

The k-th output of RBFNN with perturbed input
may be expressed as follow:

()
()2

1
2

1 j

*

2
1 j

x+ x exp
2

exp
2

n

l l jlM
l

k kj
j

M
j

kj
j

x x u
f w

v

s
w

v

=

=

=

⎡ ⎤
+ Δ −⎢ ⎥

⎢ ⎥Δ =
−⎢ ⎥

⎢ ⎥⎣ ⎦

⎛ ⎞
 = ⎜ ⎟⎜ ⎟−⎝ ⎠

∑
∑

∑

Without any prior knowledge, unseen samples in
QS are regard as having the same chance to appear.

So, xΔ , whose elements is in [,]Q Q− ,would be
considered as input perturbations which are random
variables having zero mean uniform distributions.
Moreover, RBFNN stochastic model assumes that the
inputs are independent and not identically distributed
and weight perturbations are not considered. Here, we
adopt the stochastic sensitivity measure in [1].
Considering the k-th output, the derivation is as
follows and the detailed description can be found in
[1].

()()2

2*

2 2
1 1j j

exp exp
2 2

Q

Q

S k

M M
j j

S kj kj
j j

E y

s s
E w w

v v= =

Δ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥= −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥− −⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∑ ∑

()

()

2 2 2 2 2

1 1
4 2

1 2 2 2 2 2

1 1
4 2

4 () 0.2 2
exp

2 2

() 0.2
2exp 1

2 2

l l l l l

l l l l l

n n

x x x jl x x
l l

j j
M

kj n n
j

x x x jl x x
l l

j j

u u

v v

u u

v v

σ σ σ σ

ϕ
σ σ σ σ

Δ Δ Δ
= =

=
Δ Δ Δ

= =

⎡ ⎤⎛ ⎞⎛ ⎞
+ − +⎢ ⎥⎜ ⎟⎜ ⎟

⎢ ⎥⎜ ⎟⎜ ⎟−
⎢ ⎥⎜ ⎟⎜ ⎟

⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟=
⎢ ⎥⎜ ⎟⎛ ⎞

+ − +⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟− − +
⎢ ⎥⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∑

∑
∑ ∑

()

()()

2 2 2 2

1
4

1

2 4 4 4

1 1

() 0.2

1 0.2
3 9

l l l l

n

x x x j l xM
l

kj
j j

M M

kj j j kj j
j j

u u

v

nQ E S v Q v

σ σ σ
ϕ

ϕ ϕ

Δ Δ
=

=

= =

⎛ ⎞+ − +⎜ ⎟
⎜ ⎟≈
⎜ ⎟
⎜ ⎟
⎝ ⎠

= +

∑
∑

∑ ∑

where ()2

4 2

var() ()
exp

2
j j

kj kj
j j

s E s
w

v v
ϕ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

2 2

1
() (())

l l

n

j x x j l
l

E s u uσ
=

= + −∑

()

() () ()

4 4

3 221
var()

4 4

l l

l l l l

l x xn

j
l

l x x jl x x jl

E x u
s

E x u u u u u

σ

σ=

⎛ ⎞⎡ ⎤− − +⎜ ⎟⎢ ⎥⎣ ⎦= ⎜ ⎟
⎡ ⎤⎜ ⎟− − + −⎢ ⎥⎣ ⎦⎝ ⎠

∑

4.3. Minimizing TS

For a given Q , we compare the two trained classifier,

1f and 2f . If 1f has lower TS, it will have a better
generalization capability. This is because the two
classifiers use the same unseen samples to compute TS
and 1f can recognize them more effectively.

In this paper, we use the criterion function to
construct RBFNN. We choose the RBFNN
architecture which has minimum value of TS.

The new method of constructing RBFNN can be
described as follows:

First, preprocess all samples. Normalize the input
vector to [0,1] and output to a vector only including 0
and 1.

Let M be the number of hidden neuron centers.
Step 1: Set M to be the number of classes; Step

2: Use k means− clustering to find M hidden
neuron centers; Step 3: Compute the width of hidden
neuron centers and the connection weights; Step 4: For
a given Q , compute the TS for the current RBFNN
using (4); Step 5: 1M M= + . If the stopping criterion
is not satisfied, go to Step 2; Step 6: Choose the
RBFNN architecture which corresponds to the
minimum TS.

Remark 1: In formula (4), we can enhance the
effect of sensitivity by choosing Q with bigger value.
Moreover, the samples in a neighborhood, which is
decided by Q , should belong to the same class.

Remark 2: In Step 3, we set the widths of centers
to be the multiple of the minimum distance between
neighboring cluster centers [7] and get the connection
weights using a pseudo-inverse method.

Remark 3: If M is too large, the trained RBFNN
will not only be very complicated, but also over fit the
training samples. Then its generalization capability is
quite poor. To different dataset, We stop the search
when M exceeds a value according to experience.

Remark 4: Furthermore, the criterion can be
defined as

()()
() ()()

2

21

Q

Q

S

S

emp

emp

E

E

TS R y

R yλ λ

= + Δ

 = + − Δ

where λ is a trade-off parameter to balance the effect
of training error and stochastic sensitivity. This will be
our future work.

5. Experimental results
The UCI Iris, Wine and Pima datasets are used to
demonstrate the new method MTAS. Every dataset is
divided into training set and testing set according to
7:3. This is repeated 10 times for generating 10
independent runs for each dataset.

The most critical issue in the construction of
RBFNNs is to determine the number and position of
hidden neuron centers. Our method add center on by
one, and then choose the architecture with minimum
TS. So, in this section, we compare the MTAS method
with two other methods, whose number of centers is
got by two ad-hoc estimation. The two methods get
the hidden neuron centers using k-means clustering [8].
Method A: Use the square-root of the total number of
samples to estimate the number of centers, and then
search hidden neuron centers using k-means.
Method B: Consider the number of hidden neuron
centers as the number of different output in the dataset,
and then search hidden centers using k-means.

Table 1 shows some basic information of each
dataset. There are maximum and minimum distances
of normalized samples, the value of Q , and M bound
where the search will stop, and so on.

Experimental results in different datasets are
showed in Table 2, Table 3 and Table 4. The result
analysis will be described later.

Datasets
Number of
samples

Number of
features

Number of
classes

Maximum
distance

Minimum
distance

Q M-bound

Iris 150 4 3 6.5105 0.1206 0.05 30
Wine 178 13 3 11.1800 1.1608 1 32
Pima 768 8 2 12.2052 0.3453 0.2 35

Table 1: Basic information of each dataset.

Methods Average number of
hidden neuron centers

Train accuracy
mean (%)

Train accuracy
stddv (%)

Test accuracy
mean (%)

Test accuracy
stddv (%) TS

A 12 97.648 1.3229 96.447 1.8739 0.09132
B 3 84.408 2.0891 83.11 3.9468 0.19029
MTAS 11.1 97.357 1.0382 97.336 1.7512 0.07636

Table 2: Classification performance comparisons of different methods for UCI Iris dataset over 10 independent runs.

Methods Average number of
hidden neuron centers

Train accuracy
mean (%)

Train accuracy
stddv (%)

Test accuracy
mean (%)

Test accuracy
stddv (%) TS

A 13 98.952 0.8534 98.335 1.6199 0.11304
B 3 96.853 0.5944 97.593 2.6270 0.15115

MTAS 11.8 98.577 0.8629 99.078 1.3081 0.10334
Table 3: Classification performance comparisons of different methods for UCI Wine dataset over 10 independent runs.

Methods Average number of
hidden neuron centers

Train accuracy
mean (%)

Train accuracy
stddv (%)

Test accuracy
mean (%)

Test accuracy
stddv (%) TS

A 28 80.149 1.3822 75.281 2.8970 0.79395
B 2 66.871 2.4267 66.146 2.8622 11.63587
MTAS 20.9 78.398 1.4300 77.272 2.5028 0.30641
Table 4: Classification performance comparisons of different methods for UCI Pima dataset over 10 independent runs.

Analyzing the results, we find Method A is poor
in training and testing accuracy. Because Method A
uses less hidden centers and it could not describe the
input vector space. Method B has better performance,
but it has the tendency of over-fitting and more hidden
neuron centers will lead to complicated RBFNN
architecture. Moreover, the above two methods only
give estimation on the number of hidden neuron
centers. The trained RBFNNs using them are not
stable and have higher values of TS. The proposed
new method MTAS, which selects the RBFNN
architecture by minimizing the sum of training error
and sensitivity, gets a simple RBFNN. It gives the
better training classification accuracy and the best
classification accuracy in all the three datasets.
Compared with the other methods, MTAS has smaller
value of TS. The experimental results also show that
the number of hidden neuron centers seriously
influences the network’s performance as in [9] and the
appropriate hidden centers can lead to a better RBFNN
architecture. The new method MTAS takes into
consideration the information of training samples and
unseen samples synchronously and it yields better
RBFNN.

6. Conclusions and future work
In this paper, a new method MTAS for constructing
RBFNN, based on training error and sensitivity, is
proposed. The new method chooses the RBFNN
which corresponds to the minimum TS. Here, TS is
computed within a neighborhood of training samples.
MTAS considers the generalization capability of
RBFNN and it is unnecessary to ascertain the number
of hidden centers in advance. Experimental results
show that MTAS can select simple RBFNN
architecture, which has better generalization
performance. However, there are still some problems
worthy of further study. We will further find a better
condition to stop the search ahead. Moreover, we will
consider the weighted sum of training error and
stochastic sensitivity as the criterion function. It can
balance the effect of the two parts more effectively.
We will also use more datasets with different
characteristics to demonstrate our new method.

Acknowledgement
This work is financially supported by National Science
Fund of China (60473045) and Hebei Province High
Technology project (04213533).

References
[1] W. Wing, D. S.YEUNG, D. F. Wang, E. Tsang

and X. Z. Wang, Localized generalization error
and its application to RBFNN training.
Proceedings of the Fourth International
Conference on Machine Learning and
Cybernetics, Guangzhou, 18-21 August 2005.

[2] G. B. Huang, P. Saratchandran and N.
Sundararajan, A generalized growing and
pruning RBF (GGAP-RBF) neural network for
function approximation. IEEE Transactions On
Neural Networks, 16(1), January 2005.

[3] G. B. Huang, P. Saratchandran and N.
Sundararajan, An efficient sequential learning
algorithm for growing and pruning RBF (GAP-
RBF) networks. IEEE Transactions On System,
man, and Cybernetics, 34(6), December 2004.

[4] H. Sarimveis, Alex Alexandridis and George
Bafas, A fast training algorithm for RBF
networks based on subtractive clustering.
Neurocomputing 51:501-505, 2003.

[5] W. Wing, D. S.Yeung, X. Z. Wang and I. Cloete,
A study of the difference between partial
derivative and stochastic neural network
sensitivity analysis for applications in supervised
pattern classification problems. Proceedings of
the Third International Conference on Machine
Learning and Cybernetics, Shanghai, 26-29
August 2004.

[6] W. Wing, D. S. YEUNG and I. Cloete,
Quantitative study on effect of center selection to
RBFNN classification performance. IEEE
International Conference on Systems, Man and
Cybernetics, 2004.

[7] F. Schwenker, H. A. Kestler and G. Palm, Three
learning phases for radial-basis-function
networks. Neural Networks 14:439-458, 2001.

[8] M.M. Brizzotti et al, The influence of clustering
techniques in the RBF networks generalization.

IEEProc. Of Conf. Of Image Processing and Its
Applications, pp. 87-92, 1999.

[9] V. David and A. Sanchez, On the number and
the distribution of RBF centers. Neurocomputing
7:197-202, 1995.

