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Abstract 
Ignoring the samples far away from the training 
samples, our study team gives a new norm-based 
derivative process of localized generalization error 
boundary. Enlightened by the above research, this 
paper proposes a new method to construct radial basis 
function neural networks, which minimizes the sum of 
training error and stochastic sensitivity. Experimental 
results show that the new method can lead to simple 
and better network architecture. 
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1. Introduction 
In pattern classification problems, generalization 
capability is a criterion of appraising classifier and we 
always hope a trained classifier can recognize unseen 
samples correctly. The samples, which are located far 
away the hidden neuron centers, have insignificant 
effect in the learning of hidden neuron centers [2]-[4]. 
Wing W.Y.NG, et al present localized generalization 
error model and deduce an upper boundary of 
localized generalization error [1]. They ignore the 
samples far away from the training samples and 
compute generalization error within a neighborhood of 
training samples based on mean square error as 
follows: 
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where x is input vector in the neighborhood QS , 
which is the union of  all neighborhoods of training 
samples. 

To further simplify the formula of localized 
generalization error model (LGEM) and get a smaller 
upper bound of localized generalization error (LGE), 
our study team renewedly deduces the LGE based on 
norm to compute the difference between the trained 
output function ( )xfθ  and the target function ( )xF , 

i.e. ( ) ( ) ( )x x x x
Q

gen S
R f F p dθ= −∫ , where ( )xp  is 

the unknown probability density function of the input 
x . 

During research on LGEM, we find that the upper 
bound of LGE can be confirmed by training error and 
sensitivity. Training error can reflect how well the 
classifier study from training samples. Neural network 
stochastic sensitivity is useful to assess a trained 
neural network [5]. In [6], the experiments show that 
the sensitivity measure would be correlated to the 
testing error of unseen samples. 

In this paper, we give a criterion function 
assessing a trained Radial Basis Function Neural 
Network (RBFNN) classifier, which is the sum of 
training error and stochastic sensitivity. And then, this 
paper minimizes the criterion function, i.e. the sum of 
training error and sensitivity (MTAS), to ascertain the 
appropriate RBFNN architecture. The new method 
MTAS considers the generalization capability of 
RBFNN and it is unnecessary to choose the number of 
hidden neuron centers in advance. 

2. The norm-based localized 
generalization error model 

Given a training dataset D  containing N  training 

samples, ( ){ } 1
x , y

N
i i i

D
=

= , we compute the 
generalization error of unseen samples located in a 
neighborhood QS of training samples based on norm 
as follows: 
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, Q  is a given non-negative real number and n denotes 
the number of input features. 

The following is the derivative process of the 
norm-based localized generalization error model 
(NLGEM) boundary. 
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Q iSp  can be considered as the probability 

density function of x in (x )Q iS . 
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Here, we adjust ( )xQ iSΔ  to keep the relation, 

( )1iC
N
ξ ξ≤ ≥ , ξ  is a control parameter of 

( )xQ iSΔ . 
Then, we have the following derivation: 
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During adjust ( )xQ iSΔ , i.e. Q , we try to 

ensure that the samples in the same Q  neighborhood 
belong to the same class, i.e. they have the same class 
label. So, we have 
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Remark 1: Q  can be considered as the maximum 
value of input perturbation. The perturbed input 

vectors in every neighborhood would be the unseen 
samples outside the training samples. 

Remark 2: We adjust Q  to make the samples in 
a neighborhood belong to the same class. The target 
output difference between training samples and their 
perturbed samples equals to zero. So, the upper 
boundary of LGE is predigested. 

Remark 3: For a given Q , *
genR refers to unseen 

samples, which locate within the neighborhood of 
training samples and are similar to the training 
samples. *

genR  can denote the generalization capability 
of a trained classifier according to its value. 

3. Further derivation about 
boundary of LGE 

Because ξ  exists in the two components, for a 
appropriate Q , we can ignore ξ  and pay attention to 
the following formula: 
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where the first component is training error and the 
second component is stochastic sensitivity, which 
measures the value of the network output perturbation 
with respect to input perturbations. 

Here, we consider a L class− classification 
problem and the derivations are as follows: 

If we adopt 1-norm, we have the following 
derivation: 
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If we adopt 2-norm, we have another derivation: 
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Moreover, different norm can be used in the 
derivative process synchronously. For example, the 
first component adopts 1-norm while the second 
adopts 2-norm. Other norm can be adopted in the 
above formula, too. 



4. The method for constructing 
RBFNN 

4.1. Criterion function 
Enlightened by the above research and the results in 
(1), we know the boundary of LGE is mainly affected 
by the two components, training error and stochastic 
sensitivity, whatever norm is adopted as (2) or (3). In 
this paper, we use mean square error to compute the 
training error and present a criterion function assessing 
a trained classifier. For all the samples within the QS , 
we have the following equation, 
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In equation (4), the first component is the 
mean square error of training samples and the 
second component is stochastic sensitivity, which 
is the expectation of square of output 
perturbations with respect to input perturbations. 
Then the criterion function will be applied to 
ascertain the appropriate number of hidden 
neuron centers and construct RBFNN. 

4.2. The RBFNN stochastic 
sensitivity 

The k-th output of RBFNN with multiple outputs 
could be described as: 
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The k-th output of RBFNN with perturbed input 
may be expressed as follow: 
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Without any prior knowledge, unseen samples in 
QS are regard as having the same chance to appear. 

So, xΔ , whose elements is in [ , ]Q Q− ,would be 
considered as input perturbations which are random 
variables having zero mean uniform distributions. 
Moreover, RBFNN stochastic model assumes that the 
inputs are independent and not identically distributed 
and weight perturbations are not considered. Here, we 
adopt the stochastic sensitivity measure in [1]. 
Considering the k-th output, the derivation is as 
follows and the detailed description can be found in 
[1]. 
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4.3. Minimizing TS 

For a given Q , we compare the two trained classifier, 

1f  and 2f . If 1f  has lower TS, it will have a better 
generalization capability. This is because the two 
classifiers use the same unseen samples to compute TS 
and 1f  can recognize them more effectively. 



In this paper, we use the criterion function to 
construct RBFNN. We choose the RBFNN 
architecture which has minimum value of TS. 

The new method of constructing RBFNN can be 
described as follows: 

First, preprocess all samples. Normalize the input 
vector to [0,1]  and output to a vector only including 0 
and 1. 

Let M  be the number of hidden neuron centers. 
Step 1: Set M to be the number of classes; Step 

2: Use k means− clustering to find M  hidden 
neuron centers; Step 3: Compute the width of hidden 
neuron centers and the connection weights; Step 4: For 
a given Q , compute the TS for the current RBFNN 
using (4); Step 5: 1M M= + . If the stopping criterion 
is not satisfied, go to Step 2; Step 6: Choose the 
RBFNN architecture which corresponds to the 
minimum TS. 

Remark 1: In formula (4), we can enhance the 
effect of sensitivity by choosing Q  with bigger value. 
Moreover, the samples in a neighborhood, which is 
decided by Q , should belong to the same class. 

Remark 2: In Step 3, we set the widths of centers 
to be the multiple of the minimum distance between 
neighboring cluster centers [7] and get the connection 
weights using a pseudo-inverse method. 

Remark 3: If M is too large, the trained RBFNN 
will not only be very complicated, but also over fit the 
training samples. Then its generalization capability is 
quite poor. To different dataset, We stop the search 
when M exceeds a value according to experience. 

Remark 4: Furthermore, the criterion can be 
defined as  

( )( )
( ) ( )( )

2

21

Q

Q

S

S

emp

emp

E

E

TS R y

R yλ λ

= + Δ

     = + − Δ
 

where λ is a trade-off parameter to balance the effect 
of training error and stochastic sensitivity. This will be 
our future work. 

5. Experimental results 
The UCI Iris, Wine and Pima datasets are used to 
demonstrate the new method MTAS. Every dataset is 
divided into training set and testing set according to 
7:3. This is repeated 10 times for generating 10 
independent runs for each dataset.  

The most critical issue in the construction of 
RBFNNs is to determine the number and position of 
hidden neuron centers. Our method add center on by 
one, and then choose the architecture with minimum 
TS. So, in this section, we compare the MTAS method 
with two other methods, whose number of centers is 
got by two ad-hoc estimation. The two methods get 
the hidden neuron centers using k-means clustering [8]. 
Method A: Use the square-root of the total number of 
samples to estimate the number of centers, and then 
search hidden neuron centers using k-means. 
Method B: Consider the number of hidden neuron 
centers as the number of different output in the dataset, 
and then search hidden centers using k-means. 

Table 1 shows some basic information of each 
dataset. There are maximum and minimum distances 
of normalized samples, the value of Q , and M bound 
where the search will stop, and so on. 

Experimental results in different datasets are 
showed in Table 2, Table 3 and Table 4. The result 
analysis will be described later. 

 

Datasets 
Number of 
samples 

Number of 
features 

Number of  
classes 

Maximum 
distance 

Minimum 
distance 

Q M-bound 

Iris 150 4 3 6.5105 0.1206 0.05 30 
Wine 178 13 3 11.1800 1.1608 1 32 
Pima 768 8 2 12.2052 0.3453 0.2 35 

Table 1: Basic information of each dataset. 

Methods Average number of 
hidden neuron  centers 

Train accuracy 
mean (%) 

Train accuracy 
stddv (%) 

Test accuracy 
mean (%) 

Test accuracy 
stddv (%) TS 

A 12 97.648 1.3229 96.447 1.8739 0.09132 
B 3 84.408 2.0891 83.11 3.9468 0.19029 
MTAS 11.1 97.357 1.0382 97.336 1.7512 0.07636 

Table 2: Classification performance comparisons of different methods for UCI Iris dataset over 10 independent runs. 

 

Methods Average number of 
hidden neuron  centers 

Train accuracy 
mean (%) 

Train accuracy 
stddv (%) 

Test accuracy 
mean (%) 

Test accuracy 
stddv (%) TS 

A 13 98.952 0.8534 98.335 1.6199 0.11304 
B 3 96.853 0.5944 97.593 2.6270 0.15115 



MTAS 11.8 98.577 0.8629 99.078 1.3081 0.10334 
Table 3: Classification performance comparisons of different methods for UCI Wine dataset over 10 independent runs. 

Methods Average number of 
hidden neuron  centers 

Train accuracy 
mean (%) 

Train accuracy 
stddv (%) 

Test accuracy 
mean (%) 

Test accuracy 
stddv (%) TS 

A 28 80.149 1.3822 75.281 2.8970 0.79395 
B 2 66.871 2.4267 66.146 2.8622 11.63587 
MTAS 20.9 78.398 1.4300 77.272 2.5028 0.30641 
Table 4: Classification performance comparisons of different methods for UCI Pima dataset over 10 independent runs. 

Analyzing the results, we find Method A is poor 
in training and testing accuracy. Because Method A 
uses less hidden centers and it could not describe the 
input vector space. Method B has better performance, 
but it has the tendency of over-fitting and more hidden 
neuron centers will lead to complicated RBFNN 
architecture. Moreover, the above two methods only 
give estimation on the number of hidden neuron 
centers. The trained RBFNNs using them are not 
stable and have higher values of TS. The proposed 
new method MTAS, which selects the RBFNN 
architecture by minimizing the sum of training error 
and sensitivity, gets a simple RBFNN. It gives the 
better training classification accuracy and the best 
classification accuracy in all the three datasets. 
Compared with the other methods, MTAS has smaller 
value of TS. The experimental results also show that 
the number of hidden neuron centers seriously 
influences the network’s performance as in [9] and the 
appropriate hidden centers can lead to a better RBFNN 
architecture. The new method MTAS takes into 
consideration the information of training samples and 
unseen samples synchronously and it yields better 
RBFNN. 

6. Conclusions and future work 
In this paper, a new method MTAS for constructing 
RBFNN, based on training error and sensitivity, is 
proposed. The new method chooses the RBFNN 
which corresponds to the minimum TS. Here, TS is 
computed within a neighborhood of training samples. 
MTAS considers the generalization capability of 
RBFNN and it is unnecessary to ascertain the number 
of hidden centers in advance. Experimental results 
show that MTAS can select simple RBFNN 
architecture, which has better generalization 
performance. However, there are still some problems 
worthy of further study. We will further find a better 
condition to stop the search ahead.  Moreover, we will 
consider the weighted sum of training error and 
stochastic sensitivity as the criterion function. It can 
balance the effect of the two parts more effectively. 
We will also use more datasets with different 
characteristics to demonstrate our new method. 
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