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Abstract

System identification is a fundamental topic of con-
trol theory, and LS-SVM has been applied to sys-
tem identification. An online training algorithm
of LS-SVM for system identification is presented,
which is suitable for the data set supplied in se-
quence rather than in batch. The online algorithm
avoids computing large-scale matrix inverse when
the number of support vectors changes, thus the
computation time is reduced. In order to validate
the performance of the online algorithm, the sys-
tem identification experiments are considered. The
simulation results show that the online training al-
gorithm is suitable for the online system identifica-
tion.
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1. Introduction

Support vector machine (SVM) is a new univer-
sal learning machine in the framework of structural
risk minimization (SRM) [1], which has been an
active area topic in machine learning community.
SVM achieves higher generalization performance
than traditional neural networks in many practi-
cal applications. SVM uses the kernel functions
(linear, Gaussian, polynomial and RBF kernels) to
map the data in input space to a high-dimensional
feature space where the problem becomes linearly
separable [2].

The standard SVM is solved by quadratic pro-
gramming methods, however these methods are
often time consuming and are difficult to imple-
ment adaptively [10], and suffer from the prob-
lem of large memory requirement and CPU time
when trained in batch mode. Least squares sup-
port vector machine (LS-SVM) is a modified ver-
sion of SVM, which uses the equality constraints to
replace the original convex quadratic programming
problem [3]. Consequently, the global minimizer is

much easier to obtain in LS-SVM by solving the set
of linear equations. LS-SVM has been applied to
classification [4], [5] and control theory [6]-[8].

Conventionally most learning algorithms for
LS-SVM is batch learning, in which the input data
are supplied and computed in batch [9]. For a spe-
cific application that involves a large data set and
the data arrive sequentially, that is, online arrive,
batch implementations of LS-SVM are inefficient
because they must be retrained from scratch when
the training set is modified. Therefore, it is not pos-
sible to apply LS-SVM for real-time applications,
such as signal processing, system identification. In
this case, an online training algorithm would be de-
sirable.

Recently several online training algorithms for
LS-SVM have been presented [10]-[13]. However,
most of these algorithms are only described for clas-
sification. In this paper, an online training algo-
rithm for LS-SVM is employed to system identifi-
cation, which is an extension of the work in [13].

This paper is organized as follows. Section 2
briefly reviews LS-SVM. Section 3 sets up an on-
line training algorithm. Section 4 applies online
LS-SVM to system identification. Section 5 sum-
marizes this paper.

2. Least squares support vector
machine [6]

Given a training data set of N points {xk, yk}N
k=1

with the input data xk ∈ Rn and the corresponding
target yk ∈ R. In feature space SVM models take
the form

y(x) = ωT ϕ(x) + b (1)

where the nonlinear mapping ϕ(·) maps the input
vector into a higher dimensional feature space, b is
the bias and ω is a weight vector of the same di-
mension as the feature space. In LS-SVM for func-
tion estimate, the following optimization problem



is considered
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subject to the equality constraints

yk = ωT ϕ(x) + b + ek , k = 1, . . . , N (3)

here γ is the regularization parameter.
This problem can be solved by using the opti-

mization theory. The Lagrangian function for this
problem can be define as follows

L(ω, b, e;α) = J(ω, e)−
N∑

k=1

αk(ωT ϕ(xk)+b+ek−yk) .

(4)
In this equation, the αk’s are called the La-

grangian multipliers. The saddle point can be
found by setting the derivatives equal to zero
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∂αk
= 0 → ωT ϕ(xk) + b + ek − yk = 0 (5)

for k = 1, . . . ,N. According to Karush-Kuhn-
Tucker (KKT) conditions, we can eliminate ek and
ω and get the following set of linear equations
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where y = [y1; . . . ; yN ],
−→
1 = [1; . . . ; 1], α =

[α1; . . . ;αN ] and Ωkl = ϕ(xk)T ϕ(xl) for k, l =
1, . . . , N . According to Mercer’s condition, there
exists a mapping ϕ and an expansion

K(x, y) =
∑

i

ϕi(x)ϕi(y), x, y ∈ Rn . (7)

The resulting LS-SVM model for function estima-
tion becomes

y(x) =
N∑

k=1

αkK(x, xk) + b (8)

where α, b are the solutions of (6). In this paper, for
the choice of the kernel function K(·, ·), Gaussian

kernel can be chosen, K(x, x
′
) = exp(−‖x −

x
′‖2/2σ2).

According to above description, LS-SVM uses
equality constraints and can be solved by solving a
set of linear equations, while the standard SVM is
solved by quadratic programming methods. There-
fore, the solution of the standard SVM is more com-
plex and time consuming than that of LS-SVM.

3. Online least squares support
vector machine for system
identification [13]

According to [13], the online training algorithm for
LS-SVM is stated as follows.

Considering LS-SVM model based on the first
N pairs of data has been built, and the new data
(xN+1, yN+1) is coming in.

In (6), Let
[
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]
= AN ,
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]
= αN ,
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0
y

]
= YN .

(9)
Then (6) is written as

ANαN = YN ⇒ αN = A−1
N Y N (10)

The subscript N means that the current model
is based on the first N pairs of data. For N + 1
pairs of data, have

αN+1 = A−1
N+1YN+1 (11)

where

AN+1 =
[

AN b1

b2 c

]

b1 = [1 K1,N+1 K2,N+1 . . . KN,N+1]T

b2 = bT
1

c = KN+1,N+1

YN+1 =
[

YN

yN+1

]

According to [14], the following lemmas hold.

Lemma 1 . For matrix A =
[

A11 A12

A21 A22

]
,

where A−1
11 , A−1

22 exist and let A′11 = [A11 −
A12A

−1
22 A21]−1, A′12 = A−1

11 A12[A21A
−1
22 A12 −

A22]−1, A′21 = (A21A
−1
11 A12−A22)−1A21A

−1
11 , A′22 =

[A22 − A21A
−1
11 A12]−1, then the following equation

holds

A−1 =
[

A′11 A′12
A′21 A′22

]
(12)



Lemma 2 . For matrix A,B, C, D, where
A−1, C−1 exist, the following equation is true

(A+BCD)−1 = A−1−A−1B(C−1+DA−1B)−1DA−1

(13)

According to lemma 1 and lemma 2, we can get
the following theorem.

Theorem 1 . The matrix A−1
N+1 in (11) can be

computed from A−1
N without the need of computing

the matrix inverse.

Proof. According to (12),

A−1
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Applying (13) to (14), we have
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c
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(14)
Let ∆ = [c−b2A

−1
N b1]−1, (14) can changes into:

A−1
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]
[b2A

−1
N − 1]

(15)
It is clear that A−1

N+1 can be computed from
A−1

N without the need of computing the matrix in-
verse.

As A−1
N+1 in (15) is computed in an incremental

way, the expensive inversion operation is avoided.
Therefore the corresponding coefficients and bias
αN+1 = [b α]T can be computed according to (11).
Then function estimation can work. Given a new
input x, the corresponding function value y(x) can
be estimated by (8). So the online algorithm of
LS-SVM is set up.

According to [13], the online algorithm is de-
scribed as following.

Step 1 Initial();
Step 2 Add New Training Samples(xN+1, YN+1);
[b1, b2, c] = Compute Parameter(x, y);
A−1

N+1 = Online Add(A−1
N , b1, b2, c);

αN+1 = Update Coefficients(A−1
N+1, YN+1);

N = N + 1;
Step 3 Return Step 2.

4. Simulation experiments

To verify the online lS-SVM for system identifica-
tion, in this section, the experiments are simulated.

In these experiments, the Gaussian kernel function
is adopted.
Example 1. Consider a nonlinear system.

f(i) = x(i− 2)x(i− 3)− x(i− 1)x(i− 2)/2−
f(i− 1)x(i− 3) + 0.2f(i− 1)f(i− 2) +
0.8x(i− 1)f(i− 2) + f(i− 1)e(i− 1)/2 +
0.1e(i) (16)

where e(·) is Gaussian white noise, its mean is 0 and
variance is 0.04. The input x(i) is random series
which is independent distributing in (−1, 1). Figure
1 shows the input.
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Fig. 1: The input of the nonlinear system.

We take 50 samples as training samples, and
then the other samples are sequentially obtained.
Figure 2 shows the approximation results obtained
using the online LS-SVM.
Example 2. Consider the following system.

z(k +1) =
z(k)

1 + 0.68 sin(0.0005kπ)z2(k)
+0.78u3(k)

(17)
where u(k) = sin(0.01kπ). we takes 20 data points
as the training samples, 500 of which are taken as
testing samples. The online estimation result is the
same as the batch learning, and MSE is 0.0076.
But the online algorithm is fast than the batch al-
gorithm.

From the simulation experiment, the online LS-
SVM has high efficiency, and is suitable for system
identification.

5. Conclusions

System identification plays an important role for
control theory and engineering. As the samples in
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Fig. 2: Original function (solid line) and approxi-
mation result by online LS-SVM (dotted line).

system identification are online obtained, the con-
ventional training algorithms of LS-SVM are not
suitable for online systems identification. In this
paper, an online training algorithm for LS-SVM is
employed to system identification. Simulation re-
sults show that online LS-SVM has a much faster
convergence and is suitable for system identifica-
tion.
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