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Abstract
In this paper, the fuzziness of Gomolińska approx-
imation space based on uncertainty mappings was
introduced. It is proved that many approximation
operators could be constructed by composition of
basic approximation operators.
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1. Introduction
A rough set is a set-theory-based technique to han-
dle data with granular structures by using two sets
called the rough lower approximation and the rough
upper approximation to approximation object. By
using this technique, knowledge hidden in informa-
tion systems may be unraveled and expressed in the
form of decision rules. The classical definition of a
rough set was introduced by Pawlak [1] with refer-
ence to an equivalence relation (a binary relation
with reflexivity, symmetry and transitivity).

From both theoretical and practical viewpoint,
the equivalence relation is a very stringent condi-
tion that may limit applications of rough sets. Var-
ious extensions of the Pawlak rough set were there-
fore developed from an equivalence relation to a
more general mathematical concept, e.g. a similar-
ity relation (a binary relation with reflexivity and
symmetry), a covering [2], or a neighborhood sys-
tem from the topological space [3].

Dubois and Prade studied first the fuzzifica-
tion problem of rough sets [4], [5]. Morsi and Yak-
out [6] studied a set of axioms on approximation
operators of fuzzy sets and defined a special fam-
ily of approximation operators of fuzzy sets using
the T-norms and the residuation implicators. Ad-
ditionally, Radzikowska and Kerre [7] gave another
general method for the fuzzification of rough sets.
They defined a broad family of fuzzy rough sets,
each of which is determined by a triangular norm

and an implicator. But the discussions of fuzzy
rough set in many of article are based on [0,1]-fuzzy
set rather than L-fuzzy set. Later, Radzikowska
and Kerre [8] generalized the model of fuzzy rough
set to L-fuzzy rough set based on residuated lat-
tice and discuss some basic properties of approxi-
mation operators of the L-fuzzy rough set. T. Deng
[9] fuzzify the general rough approximation opera-
tors and present a new approach to fuzzy rough sets
through the use of techniques provide by residuated
lattice.

In those L-fuzzy rough set model, approxima-
tion operators have several types of definition. In
this paper, we studies the relation of those approx-
imation operators in L-fuzzy approximation space.
It is proved that those approximation operators of
L-fuzzy rough set are special cases of approximation
operators based on L-fuzzy set-valued mappings.

2. Preliminaries
A monoid is a structure (U,⊗, ε), where U is a non-
empty universe, ⊗ is a binary operator on U and ε
is a unit element of ⊗, i.e. for every x ∈ U , ε⊗x =
x ⊗ ε = x. A monoid (U,⊗, ε) is commutative if
and only if ⊗ is commutative. Typical example of
monoid is triangle norm on [0, 1], where ε = 1.

Let (L,≤) be a poset and ⊗ a binary operation
on L. The residuum of ⊗ is a binary operator→ in
L satisfying the following residuated condition: for
all a, b, c ∈ L, a⊗ b ≤ c ⇔ a ≤ b → c. The operator
→ is bounded if and only if for every x ∈ L, 1 →
x = x.

Definition 2.1 [10] By a residuated lattice, we
mean an algebra L = (L,∨,∧,⊗,→, 0, 1), such that

(1) (L,∨,∧, 0, 1) is a bound lattice with the top el-
ement 1 and the bottom element 0.

(2) ⊗ : L×L → L is a binary operator and satisfies
for all a, b, c ∈ L,
• a⊗ b = b⊗ a,



• a⊗ (b⊗ c) = (a⊗ b)⊗ c,
• 1⊗ a = a,
• a ≤ b ⇒ a⊗ c ≤ b⊗ c.

(3) →: L× L is a residuum of ⊗, i.e. → satisfies
for all a, b, c ∈ L

a⊗ b ≤ c ⇔ a ≤ b → c.

A residuated lattice L = (L,∨,∧,⊗,→
, 0, 1) is called complete iff the underlying lattice
(L,∨,∧, 0, 1) is complete. Given a residuated lat-
tice L, we define the precomplement operator ∼ as
following, for every a ∈ L, ∼ a = a → 0.

Proposition 2.2 [10]-[12], Suppose L = (L,∨,∧,
⊗,→, 0, 1) is a residuated lattice, and ∼ is the pre-
complement operator on L. Then for all a, b, c ∈ L,

(1) a⊗ b ≤ a ∧ b, a → b ≥ b.
(2) a → (b → c) = (a⊗ b) → c.
(3) If a ≤ b, then c → a ≤ c → b and b → c ≤ a →

c.
(4) a ≤ b ⇔ a → b = 1.
(5) a ≤ b ⇒∼ a ≥∼ b.
(6) a ≤∼∼ a.
(7) a → b ≤∼ (a⊗ ∼ b),

a⊗ b ≤∼ (a →∼ b).
(8) If L is a complete lattice, then

(∨i∈Iai)⊗ b = ∨i∈I(ai ⊗ b),
a → ∧i∈Ibi = ∧i∈I(a → bi),
∨i∈Iai → b = ∧i∈I(ai → b),
a → ∨i∈Ibi ≥ ∨i∈I(a → bi),
∧i∈Iai → b ≥ ∨i∈I(ai → b).

Definition 2.3 [9] Let ⊗ be a conjunction on a
complete residuated lattice L, A L-fuzzy relation RL

on U is a L-fuzzy set RL ∈ FL(U) × FL(U)) is
called:

• reflexive if R(x, x) = 1, for every x ∈ U ;
• symmetric if R(x, y) = R(y, x), for every

x, y ∈ U ;
• ⊗-transitive if R(x, z)⊗R(z, y) ≤ R(x, y), for
every x, y, z ∈ U .

If the R is reflexive, symmetric and ⊗-transitive,
then R is ⊗-similarity.

Proposition 2.4 [7] Let L be a residuated lattice.
If the R ∈ FL(U) × FL(U) is a reflexive and ⊗-
transitive fuzzy relation, then for every x, y ∈ U

R(x, y) =
∨

y∈U

(R(x, z)⊗R(z, y)) =
∧

y∈U

(R(x, z) → R(z, y)).

3. Approximation operators in
L-fuzzy approximation space

Definition 3.1 [2] By an approximation space,
we mean a triple A = (U, I, k), where U is a non-
empty set called the universe, I : U → P(U) is an
uncertainty mapping, and k : P(U)×P(U) → [0, 1]
is a rough inclusion function and satisfies: for ev-
ery X, Y ∈ P(U)

• k(X, Y ) = 1 if and only if X ⊆ Y ;
• k(X, Y ) > 0 if and only if X ∩ Y 6= ∅.

Definition 3.2 By a L-fuzzy approximation
space, we mean a triple A = (U,FL,K),
where U is a non-empty set called the uni-
verse, FL : U → FL(U) is an uncertainty mapping,
and k : FL(U)×FL(U) → [0, 1] is a rough inclusion
function and satisfies: for every X, Y ∈ FL(U)

• K(X, Y ) = 1 if and only if ∧x∈U [X(x) →
Y (x)] = 1;

• K(X, Y ) > 0 if and only if ∨x∈U [X(x) ⊗
Y (x)] > 0.

The mapping F may be viewed as a granulation
function which assigned each u ∈ U to a fuzzy set
of F(U), i.e. an elementary granule of information.
In this way an indexed family of fuzzy sets which
is elementary granules of information from our per-
spective,

F→L (U)(x) =
∨

u∈U

[FL(u)](x)

is obtained. Then F→L (U) is a fuzzy semi-partition
of U , i.e. ∧

x∈U

F→L (U)(x) < 1,

or a fuzzy partition of U , i.e.
∧

x∈U

F→L (U)(x) = 1.

In the approximation space A, we determine
what fundamental properties any reasonable rough
approximation mapping f : FL(U) → FL(U)
should possibly posses. We distinguish two kinds
of approximation mappings: lower and upper ap-
proximation mappings (in short low- and upp-
mappings). Such “rationality” postulates for low-
and upp-mapping could have the following forms:

• Every low-mapping f is decreasing. (i.e. for
each X ⊆ U, x ∈ U , f(X)(x) ≤ X(x));



• Every upp-mapping f is increasing. (i.e. for
each X ⊆ U, x ∈ U , X(x) ≤ f(X)(x));

• If f is a low-mapping, then for every X ⊆
U, f(X)(x) = 1, K(f(x), X(x)) = 1;

• If f is an upp-mapping, then for every X ⊆
U, f(X)(x) = 1, K(f(x), X(x)) > 0;

• For each X ⊆ U , f(X) is definable in A;
• For each X ⊆ U is definable in A, f(X) = X.

In the L-fuzzy approximation space A =
(U,FL,K), The mapping FL generates a L-fuzzy
binary relation RL ∈ U × U , such that for every
x, y ∈ U

[FL(x)](y) = RL(x, y).

Then

• RL is reflexive if and only if for every x, y ∈ U ,
[FL(x)](x) = 1;

• RL is symmetry if and only if for every x, y ∈
U , [FL(x)](y) = [FL(y)](x);

• RL is ⊗-transitive if and only if for ev-
ery x, y, z ∈ U , [FL(x)](z) ⊗ [FL(z)](y) ≤
[FL(x)](y);

• RL is ⊗-similarity if and only if for ev-
ery x, y, z ∈ U , [FL(x)](z) ⊗ [FL(z)](y) =
[FL(x)](y).

X ⊆ F(U) is definable in an approximation
space A if and only if there is a set Y ⊆ U such
that

X(x) =
∨

y∈U

((FL(x))(y)⊗ Y (y)).

Let C = {f(X)|f(x) is definable}, then C is a
L-fuzzy partition of the universe U .

For every X ∈ FL(U), x ∈ U , let

[D+(x)](y) = RL(y, x),
[D−(x)](y) = RL(x, y);

[D+(X)](y) =
∨

x∈X

RL(y, x),

[D−(X)](y) =
∨

x∈X

RL(x, y).

represent dominating set and dominated set with
respect to X, respectively.

In this section, we consider some mappings
f1, f2, f3, f4 : FL(U) → FL(U), where for every

X ∈ FL(U), x ∈ U .

f1(X)(x) = (D+(X)⊗X)(x)

=
∨

y∈U

(RL(y, x)⊗X(y)),

f2(X)(x) = (D−(X)⊗X)(x)

=
∨

y∈U

(RL(x, y)⊗X(y));

f3(X)(x) = D+(X)(x)⊗X(x)

=
∨

y∈U

(RL(y, x)⊗X(x)),

f4(X)(x) = D−(X)(x)⊗X(x)

=
∨

y∈U

(RL(x, y)⊗X(x)).

and their respective “dual” mappings fd
1 , fd

2 , fd
3 , fd

4

fd
1 (X)(x) = (D+(X) → X)(x)

=
∧

y∈U

(RL(y, x) → X(y)),

fd
2 (X)(x) = (D−(X) → X)(x)

=
∧

y∈U

(RL(x, y) → X(y));

fd
3 (X)(x) = D+(X)(x) → X(x)

=
∧

y∈U

(RL(y, x) → X(x)),

fd
4 (X)(x) = D−(X)(x) → X(x)

=
∧

y∈U

(RL(x, y) → X(x)).

If a set X ∈ FL(U) is definable in an approxi-
mation space A if and only if there is Y ∈ FL(U)
such that for every x ∈ U , X(x) = f0(Y )(x).

Proposition 3.3 Consider any f : FL(U) →
FL(U). f(X) is definable for any X ⊆ U if and
only if there is a mapping g : FL(U) → FL(U)
such that f = f0 ◦ g.

Proposition 3.4 In the L-fuzzy approximation
space A = (U,FL,K) based on residuated lattice
L, it holds for every X ∈ FL(U) , x ∈ U ,

(1) If RL is symmetric, then f1(X)(x) = f2(X)(x)
and f3(X)(x) = f4(X)(x);

(2) If RL is reflexive, then f1(X)(x) = f3(X)(x)
and f2(X)(x) = f4(X)(x);

(3) If RL is ⊗-similarity, then f1(X)(x) =
f2(X)(x) = f3(X)(x) = f4(X)(x) and
fi(X)(x) = fi(X)(x) ◦ fi(X)(x), i = 1, 2, 3, 4 ;



From the Proposition 3.3 and 3.4, we draw a
conclusion

Corollary 3.5 Suppose that the L-fuzzy binary re-
lation is ⊗-similarity. For any approximation op-
erator f in L-fuzzy approximation space A, there
exists a mapping g : FL(U) → FL(U) such that
f = f0 ◦ g.

From the definition of L-fuzzy approximation
operators fi, i = 1, 2, 3, 4, the L-fuzzy approxima-
tion operators can represent other approximation
operator by the compound of fi, i = 1, 2, 3, 4. Such
as the approximation operator of L-fuzzy rough set
based on residuated lattice in [8], f2, f

d
2 are upper

and lower approximation operators respectively. In
the approximation operator in [9], the upper and
lower operators are represented as fd

2 ◦f2 and f2◦fd
2 ,

respectively.

4. Properties of L-fuzzy ap-
proximation operators

Proposition 4.1 For any sets X, Y ⊆ FL(U), ob-
ject x, y ∈ U , and i = 1, 2, 3, 4, it holds that:

(1) fd
i ≤ id ≤ fd

i ;
(2) f1(x) is definable;
(3) fi(F→(U)) = fd

i (F→(U)) = F→(U);
(4) [f1(x)](y) = 1,K([FL(y)](x), X(x)) > 0;
(5) [fd

1 (x)](y) = 1,K([FL(y)](x), X(x)) = 1;
(6) fi(∅) = ∅, fi(U) = U ;
(7) fi and fd

i are monotone;
(8) fi(X ∪ Y ) = fi(X) ∪ fi(Y );
(9) fi(X ∩ Y ) ⊆ fi(X) ∩ fi(Y );

(10) fd
i (X ∪ Y ) ⊇ fi(X) ∪ fi(Y );

(11) fd
i (X ∩ Y ) = fd

i (X) ∩ fd
i (Y ).

IMTL-algebra is the special case of residuated
lattice [11],[12] . The upper and lower approxima-
tion operators of L-fuzzy rough set based on IMTL-
algebra are dual [13] . Similarity, in the L-fuzzy
approximation space based on IMTL-algebra, the
L-fuzzy approximation operator fi, i = 1, 2, 3, 4 can
find its dual operator.

Proposition 4.2 If the L-fuzzy approximation
space A = (U,FL,K) based on IMTL-algebra, the
approximation operator fi, i = 1, 2, 3, 4 have the
their dual operator fd

i , i = 1, 2, 3, 4, respectively.
that is say for every X ∈ FL(U), x ∈ U ,

fi(X)(x) =∼ fd
i (∼ X)(x).

5. Conclusions
In approximation space A, the L-fuzzy approxima-
tion operators fi, i = 1, 2, 3, 4 degenerate the clas-
sical approximation operators of generalized rough
set as following:

(1) f ′1(X) =
⋃{Rs(x)|Rs(x) ∩X 6= ∅},

f ′d1 (X) =
⋂{Rs(x)|Rs(x) ⊆ X};

(2) f ′2(X) =
⋃{Rp(x)|Rp(x) ∩X 6= ∅},

f ′d2 (X) =
⋂{Rp(x)|Rp(x) ⊆ X};

(3) f ′3(X) = {x|Rs(x) ∩X 6= ∅},
f ′d3 (X) = {x|Rs(x) ⊆ X};

(4) f ′4(X) = {x|Rp(x) ∩X 6= ∅},
f ′d4 (X) = {x|Rp(x) ⊆ X};

where Rs(x) and Rp(x) are dominating set Rs(x) =
{y|y ∈ I(x)} and dominated set Rp(x) = {y|x ∈
I(y)} with respect to X, respectively.

Following the methods [2] , we can define the
fi, i = 5, 6, · · · . But the properties of the approx-
imation operators in L-fuzzy approximation space
isn’t thoroughly extended from the approximation
in generalized approximation space in [2] , such as,
f2 is L-fuzziness of f ′0 ◦ f ′d1 , and those properties
needs more researchers to study.
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