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Abstract 
The problem of robust sliding mode control (SMC) for 
uncertain time-delay systems is investigated in this 
paper. Based on novel ideal of virtual state feedback 
control, a delay-independent sufficient condition is 
developed for the design of a robust stable sliding 
mode plane in term of linear matrix inequalities (LMI). 
A SMC controller is derived to ensure system 
trajectories starting from any initial state convergent to 
the sliding mode plane. The global stability of the 
closed-loop system is guaranteed. A numerical 
example with simulation results is given to illustrate 
the effectiveness of the methodology. 
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1. Introduction 
Time-delay is often encountered in various industrial 
systems, such as the turbojet engines, electrical 
networks, automotive systems, and chemical process, 
etc. Its existence is frequently a source of poor system 
performance, or instability. Hence, the control of time-
delay systems has received considerable attention over 
the past two decades, and different design approaches 
have been proposed [1]. However, most of them are 
sensitive to the uncertainty, which directly affects the 
performances of the closed-loop systems. 

The sliding mode control has attractive features to 
keep systems insensitive to the parameter uncertainties 
and external disturbances on the sliding mode plane 
[2]. SMC research has mostly focused on uncertain 
system without time-delay, but their methods are hard 
to apply indectly to uncertain time-delay system. Li 
and Yurkovich applied a linear nonsingular state 
transformation to time-delay systems to produce a 
delay-free system, which allows us to use existing 
techniques to design a control [3]. Gousisbaut et al. 
presented a sliding mode control methodology for a 
class of uncertain time-delay systems with matched 
external disturbances [4]. Yuanqin Xia et al. suggested 

a robust sliding mode control for uncertain time-delay 
system; a delay-independent sufficient condition for 
the existence of linear sliding plane is given in terms 
of LMI [5]. Said Oucheriah studied a continuous 
sliding mode controller to deal with the problem of 
robust exponential stabilizations of a class of time-
delay systems [6]. But almost all designs of sliding 
mode controllers are depended on the nonsingular 
state transformation in order to get a regular form of 
system, which is easy to construct the sliding mode 
plane using the common method. Due to use of 
nonsingular state transformation, the results is more or 
less complicated and conservative. Xiaoqiu Li and 
Decarlo proposed a robust adaptive sliding mode 
controller in term of Lyapunov method [7]-[8], but the 
whole design is complicated and the range of 
switching controller is extravagant. Chien-Hsin Chou  
et al. developed a delay-independent adaptive SMC to 
overcome uncertainties and disturbances, but only 
suitable to the matched uncertainties [9] 

In this paper, we consider how to design sliding 
mode plane and reaching motion controller for a class 
of time-delay system with mismatched uncertainties 
and matched external disturbances. The sliding mode 
plane is defined as a linear function of system state. 
Based on the Lyapunov method, a sufficient condition 
for the existence of linear sliding plane is derived in 
term of virtual state feedback controller without any 
state transformation, which can be relaxed to design 
the linear sliding mode plane. A simple and suitable 
sliding mode controller is adopted and the whole 
design is easy to implement since the given condition 
is represented by LMI, which can be very efficiently 
solved by LMI toolbox. 

2. System description 
Consider the uncertain time-delay system of the form 

( ( )) ( ) ( ( )) ( ) ( ( ))( ) d dA A t x t A A t x t d B u f tx t + Δ + + Δ − + +=&    
(1) 

where nx R∈ is the system state, mu R∈ is the control 
input, and A , dA and B are constant matrices with 



appropriate dimension; ( )A tΔ and ( )dA tΔ are unknown 
time-varying parameter uncertainties; ( )f t is a 
external disturbance. The initial condition is given as 

( ) ( )x t t= Ψ for [ 0]t d∈ − . 
We presume the following assumptions are valid. 
1). The matrix B  is assumed to have full column, 

and the pair ),( BA is stabilisable, i.e. there exist 

matrix K  such that A A BK= − is stable. 
2). The admissible uncertainties are assumed to be 

of the form 
[ ] ( )[ ]d dA A DF t E EΔ Δ =                           (2) 

where D , E  and dE are known constant matrices, and 
( )F t is unknown time-varying matrices with Lebesgue 

measurable elements satisfying ( ) ( )TF t F t I≤ . 
3). The external disturbance is bounded as 

|| ( ) || ff t δ≤ . 

Remark1. In (2), the same matrix ( )F t appears in 
the uncertainties of system matrices. Some papers use 
independent uncertainties on e.g. A , dA as follows 

1 1 1 2 2 2[ ] [ ( ) ( ) ]dA A M F t N M F t NΔ Δ =               (3) 
Let us take 

1 2[ ]D M M= , 1[ 0]T TE N= , 2[0 ]T T
dE N=  

1 2( ) { ( ), ( )}F t diag F t F t=  
This shows that uncertainties (3) can be always 

expressed as (2) with an appropriate structure of E , 
dE and ( )F t . 

Let us choose the sliding mode plane 
( ) 0TS B Px t= =                                (4) 

where m mP R ×∈ is a positive definite matrix to be 
chosen later. For convenience, usually, the following 
lemma is necessary [10]. 
Lemma 1. Given matrices TY Y= , D , E , and time- 
varying matrix ( )F t satisfies ( ) ( )TF t F t I≤ , so the 

inequality ( ) 0TY DFE DFE+ + <  is equivalent to the 

inequality 1 0T TY DD E Eε ε −+ + <  for some constant 
0ε > . 

3. Main conclusion 
The aim is to design a sliding mode controller in two 
steps. First, we design a suitable controller to drive 
globally the system trajectory to the sliding mode 
plane. The second step is to design a robust sliding 
mode plane so that the system restricted to the sliding 
mode plane has insensitive to parameter uncertainties 
and external disturbances. We can obtain the 
following conclusions.  
Theorem 1. Under assumptions (1-3), and the linear 

sliding mode plane is given by (4), the trajectories of 
the whole system starting from any initial state can be 
driven onto the sliding mode plane in finite time with 
the control 

( ) eq nu t u u= +                                      (5) 
with the equivalent control  

1( ) [ ( ) ( )]T T T
eq du B PB B PAx t B PA x t d−= − + −  

the switching control 
1

0

( ) [|| || (|| ( ) || || ( ) ||)

|| || ]sgn( )

T T
n d

T
f

u B PB B PD Ex t E x t d

B PB Sδ ε

−= − + −

+ +
 

where 0ε is small positive constant. 
Proof. Consider the Lyapunov function 

0.5 TV S S=                                       (6) 
which is positive-definite for all ( , ) 0S x t ≠ . The 
derivative of the Lyapunov function respect to time is  

0

0

( )
( ) ( ) ( )

|| || . || || ( || || ) sgn( )

|| ||
0

T

T T

T T T T T T
d n

T T T
f f

V S S
S B Px t
S B P Ax t S B P A x t d S B PB u f

S B PB S B PB S

S

δ δ ε

ε

=

=

= Δ + Δ − + +

≤ − +

≤ −
≤

&&

&

 
The last inequality is known to show that the 

trajectory of system can be driven onto the sliding 
mode plane in finite time. The proof is completed. 

The next is to design the robust sliding mode 
plane such that the system trajectories restricted to the 
sliding mode plane are stable in the present of 
parameter uncertainties and external disturbances. 
Theorem 2. The system is quadratically stable on the 
sliding mode plane described by (4) with 1P X −=  if 
exist symmetric positive-definite matrices X , V , 
general matrix L and positive constant ε  such that the 
following LMI is held 

* 0
0

* * 0
* * *

T
d

T
d

H A XE X
V E

I
V

ε

⎡ ⎤
⎢ ⎥−⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

                       (7) 

where T T T TH AX XA BL L B DDε= + − − + . 
Proof. Our idea is to design the robust sliding mode 
plane in term of virtual state feedback controller.  

We consider the controller (5) expressed as  
( ) ( )u t Kx v t= − +                                (8) 

where ( ) eq nv t Kx u u= + + . So the close-loop system 
can be obtain 

( ) ( ( )) ( )
( ( )) ( ) ( ( ))d d

x t A A t x t
A A t x t d B v f t

= + Δ
+ + Δ − + +

&
     (9) 

where A A BK= − . 
Choose a candidate Lyapunov function  



( , ) ( ) ( )
tT T

t d
V x t x Px x s Rx s ds

−
= + ∫                  (10) 

where P and R is the symmetric positive-definite 
matrices. Then the derivative of ( , )V x t is  

( , ) 2 ( ) ( ) ( ) ( ) ( ) ( )
2 [( ) ( ) ( ) ( )]

( ) ( ) ( ) ( )
2 ( ( ))

T T T

T
d d

T T

T

V x t x t Px t x t Rx t x t d Rx t d
x P A A x t A A x t d

x t Rx t x t d Rx t d
x PB v f t

= + − − −

= + Δ + + Δ −

+ − − −

+ +

& &

  

Once on the sliding mode plane, the derivative of 
( , )V x t can be reduced to the following simple 

quadratic form according to (4) 
( )

( , ) [ ( ) ( )]
( )

T T x t
V x t x t x t d M

x t d
⎡ ⎤

= − ⎢ ⎥−⎣ ⎦
&           (11) 

where  
( ) ( ) ( )

*

T
d dA A P P A A R P A A

M
R

⎡ ⎤+ Δ + + Δ + + Δ
= ⎢ ⎥−⎣ ⎦

(12)  

By substituting (2) into (12), one can be obtained    

[ ] [ ]
0 0

T
T T

d d

PD PD
M Y F E E E E F⎡ ⎤ ⎡ ⎤

= + +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

   (13) 

where  

0

T
dA P P A R PA

Y
R

⎡ ⎤+ +
= ⎢ ⎥−⎣ ⎦

 

From Lemma1, inequality 0M <  is equivalent to  

1[ ] [ ] 0
0 0

T
T

d d

PD PD
Y E E E Eε ε −⎡ ⎤ ⎡ ⎤
+ + <⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
     (14) 

where constant 0ε > . Inequality (14) can be 
transformed into LMI 

* 0
* *

T T T
d

T
d

A P PA PDD P R PA E
R E

I

ε

ε

⎡ ⎤+ + +
⎢ ⎥− <⎢ ⎥
⎢ ⎥−⎣ ⎦

     (15)  

Pre-multiplying and post-multiplying (15) by matrix 
1{ }diag P I I− , and defining 1X P−= , the following 

LMI can be obtained using Schur complement 
theorem  

1

* 0
0

* * 0
* * *

T T T
d

T
d

XA AX DD A XE X
R E

I
R

ε

ε
−

⎡ ⎤+ +
⎢ ⎥−⎢ ⎥ <
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

     (16) 

Pre-multiplying and post-multiplying (16) by 
1{ }diag I R I I− again, and defining 1V R−= , 

L KX= , the LMI (7) can be obtained using Schur 
complement theorem. The proof is completed.  

So we can draw a conclusion that the system 
trajectories starting from any initial state will 
asymptotically convergent the sliding mode plane and 
system trajectories restricted to the sliding mode plane 

are stable from theorem 1 and theorem 2.  
Remark 2. The state feedback is virtual controller in 
term of (8), which is only help to design the stable 
sliding mode plane. Obviously, the whole design is 
considerable brief because any state transformation is 
not needed. Furthermore, although systems only with a 
state delay are considered, it is straightforward to 
extend the method to systems with finite time delays. 

4. Number example 
Consider the uncertain time-delay system (1) of the 
form with 

2 0 1
1.75 0.25 0.8

1 0 1
A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

, 
1 0 0

0.1 0.25 0.2
0.2 0.4 0.5

dA
−⎡ ⎤

⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

0
0
1

B
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0.1 0.2 0.2 0.1 0.2 0.2
0 0.2 0.2 0 0.2 0.2
0 0 0.3 0 0 0.3

D
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0 0 0 0 0 0
0.2 0.3 0.3 0 0 0
0.3 0.2 0.33 0 0 0

T

E
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 
0

0.3sin(2 )
0

f t
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

0 0 0 0 0 0
0 0 0 0.2 0.3 0.3
0 0 0 0.3 0.2 0.33

T

dE
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 3 3

3 3

sin( )1( )
cos( )3

t I
F t

t I
×

×

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

The initial condition is given as 
( ) [1 1 1]Tx t = , [ 0.5 0]t∈ −  

Corroding to theorem2, the following feasible 
solutions can be obtained 

434.9 192.1 1309.5
192.1 124.6 801.1
1309.5 801.1 6038.9

X
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

4410.6 67 1205.1
67 3849.4 450.2

1205.1 450.2 7337.3
V

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

, 

[ ]66 465 1366.1L = , 1926.4ε = . 
So we can obtain the sliding mode plane 

described by (4) with 1P X −= . Fig1-3 are simulation 
results when choosing corresponding parameters 

0.3fδ = , 0 0.01ε = . Obviously, the system is 
asymptotically and sliding mode motion trends to the 
origin in finite time in spite of time-delay and 
uncertainties.  

5. Conclusions 
In this paper, the problem of designing robust sliding 
mode planes has been considered for a class of time-
delay systems with unmatched uncertainties based on 
quadratic stability. The sliding mode planes are 
defined as a linear function of current state, and 
corresponding sufficient conditions are derived to 



guarantee quadratic stability of sliding mode motion in 
term of the virtual state feedback controller. A simple 
controller is proposed to guarantee the trajectory of the 
closed-loop systems can convergent to the sliding 
mode plane in finite time. Finally, a numerical 
example is given to illustrate the effectiveness of our 
method. 

 
Fig. 1: Trajectories of system states. 

 

 
Fig. 2: The sliding mode. 

 

 
Fig. 3: The proposed control. 
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