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Abstract 
This paper discusses the synchronization of uncertain 
Lü chaotic systems. Based on the idea of active 
control, a novel active pining control strategy is 
presented, which only needs a state of uncertain Lü 
chaotic systems. The proposed controller can achieve 
synchronization between a salve system and a master 
system, and ensure the synchronized robust stability of 
uncertain Lü chaotic systems. Numerical simulations 
of Lü chaotic systems show that the controller can 
make chaotic systems achieve synchronization in a 
quite short period and the synchronization is of good 
robust stability. 
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1. Introduction 
Chaos is an interesting phenomenon of nonlinear 
systems. A deterministic chaotic system has some 
remarkable dynamic characteristics [1], such as system 
evolution sensitive to the change in initial conditions 
and broad spectrum of Fourier transform. It can be 
treated as a carrier to modulate signals that have the 
random characteristics. It also has the overall stability. 
When we use a chaotic signal to drive two identical 
systems, the two systems or certain parts of them will 
have the synchronous behavior, which does well for 
confidential communication. 

Chaos synchronization has attracted a great deal 
of attention since Pecora and Carroll established a 
chaos synchronization scheme for two identical 
chaotic systems with different initial conditions. 
Various effective methods have been presented to 
synchronize various chaotic systems, for example, 
Lyapunov method, linear and nonlinear feedback 
control, adaptive control, impulse control, and so on 
[2]-[4]. Bai. E. W proposed an active control method 
to synchronize two Lorenz systems [5]. Song designed 
time-delayed repetitive learning control to synchronize 
chaotic systems [6]. Wang studied the stabilization of 
Chen chaotic system and obtained a unified control 
strategy [7]. Chen Zhi-sheng used nonlinear feedback 

control to achieve the synchronization of Lü system 
[8].  

In this paper, the synchronization problem of two 
uncertain chaotic systems is considered. Based on the 
idea of active control and the theory of pining control, 
an active pining controller is designed. The controller 
achieves synchronization of two chaotic systems with 
parametric uncertainty and ensures the robust stability 
of uncertain Lü chaotic system synchronization. The 
theoretical analysis and numerical simulations are 
presented to illustrate the proposed controller. The 
results indicate the controller could synchronize 
uncertain chaotic systems in any initial condition in a 
short period, with excellent robust stability.  

2. Problem formulation and active 
pining control method 

We consider the following two identical nonlinear 
uncertain chaotic systems. The master system is given 
by 

( ) ( ) ( ) ( )x t A A x t f x= + Δ +&                      (1)                             
and the salve system is given by 

             ( ) ( ) ( ) ( ) ( )y t A A y t f y u t= + Δ + +&            (2) 
where , nx y R∈  is the state, mu R∈ is the control input, 
the nonlinear function f  is continuously 
differentiable and satisfies the global Lipschitz 
condition. A  is a constant matrix with appropriate 
dimension, ( )A tΔ  denotes parametric uncertainty or 
structural variation of the system and satisfies 

( ) ( )A t tδΔ ≤ . 
Our goal is to design a simple appropriate 

controller ( )u t  such that the trajectory of the salve 
system (2) asymptotically approaches the master 
system (1) and achieve synchronization finally. 

Defined error e y x= − , let (2) subtract from (1), 
we obtain 

            ( ) ( ) ( ) ( , ) ( )e t A A e t F x y u t= + Δ + +&           (3) 
where ( , ) ( ) ( )F x y f y f x= − .  

According to the idea of active control [5], we can 
use the control input ( )u t to eliminate all items that 



cannot be shown in the form of the error e . By this 
way, the control input can be determined 
                        ( ) ( ) ( , )u t W t F x y= −                        (4)  

Substituting (4) into (3), equation (3) can be 
rewritten as 
                      ( ) ( ) ( ) ( )e t A A e t W t= + Δ +&                   (5) 
Equation (5) describes the error dynamics of 
synchronization for uncertain chaotic system, and can 
be considered a common control problem.  

Usually, it is difficult to obtain all states for the 
practical system. So the controller only using partial 
system state is useful for the synchronization of 
uncertain Lü chaotic systems.  

The pining control only includes a system state, 
which can stabilize the total system by the coupling of 
system [9]. As long as controller stabilizes the system 
(5), the error e  will converge to zero in infinite time. 
This implies that the master system (1) and the salve 
system (2) are synchronized finally.  

3. A active pining controller for Lü 
chaotic systems 

We consider the following uncertain Lü chaotic 
systems. The master system is given by 

1 2 1

2 1 3 2 3

3 1 2 3

( )

( )

x a x x
x x x cx dx
x x x b b x

= −⎧
⎪ = − + + Δ⎨
⎪ = − + Δ⎩

&

&

&

                         (6) 

and the salve system is given by 
1 2 1 1

2 1 3 2 3 2

3 1 2 3 3

( ) ( )
( )

( ) ( )

y a y y u t
y y y cy dy u t
y y y b b y u t

= − +⎧
⎪ = − + + Δ +⎨
⎪ = − + Δ +⎩

&

&

&

             (7) 

where 1 ( )d k tεΔ = , 2 ( )b k tεΔ =  are uncertainties, and                                                                

1 0.05k = , 2 0.1k =  are the amplitude values of the 
stochastic noise ( )tε .  

According to the above discussion, the errors 
dynamic system (5) can be gotten easily. We can 
obtain the following conclusion.  

Theorem: For uncertain Lü chaotic systems (5) 
with control 2[0 0]W ge= , ie. 1 3( ) ( ) 0w t w t= = , 

2 2( )w t ge= , where the feedback gain  
2

2 1

2

( )
min ,

4 4 ( )
a b k qkag c

q q b k q
⎧ ⎫+ +

< − + −⎨ ⎬
−⎩ ⎭

 

the salve system (7) and the master system (6) are 
synchronized finally. 

Proof: According to the above discussion, errors 
dynamics system (5) is 

1 1

2 1 2 2

3 2 3

0 0
0 ( )
0 0 ( ) 0

e ea a
e c k t e ge
e b k t e

ε
ε

−⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

&

&

&

 

ie. 
1 2 1

2 2 1 3

3 2 3

( )
( ) ( )

( ( ))

e a e e
e c g e k t e
e b k t e

ε
ε

= −⎧
⎪ = + +⎨
⎪ = − +⎩

&

&

&

                         (8)  

Consider the Lyapunov function candidate 
2 2 2
1 2 3

1 ( )
2 2

qV e e e= + +  

where q is positive constant. The derivative of the 
Lyapunov function respect to time is 

{ }
1 1 2 2 3 3

1 2 1 2 2 1 3 3 2 3

2 2 2
1 1 2 2 1 2 3 2 3
2 2 2
1 1 2 2 2 3 1 2 3

1 2 3 1 2 3

( )
[ ( )] [( ) ( ) ] ( ( ))

[( ) ( ) ( ( )) ]

[( ) ( ( )) ( ) ]

( , , ) ( , , )T

V e e q e e e e
e a e e q e c g e k t e e b k t e

ae ae e q c g e k t e e b k t e

ae a e e q c g e b k t e k t e e

e e e P e e e

ε ε

ε ε

ε ε

= ⋅ + ⋅ + ⋅

= − + + + − +

= − + + + + − +

≤ − + + + − + +

= −

& & & &

(9) 
where 

1

1 2

1 0
2

1 1( ) ( )
2 2

10 ( ) ( ( ))
2

a a

P a q c g qk t

qk t q b k t

ε

ε ε

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥= − − + −⎢ ⎥
⎢ ⎥
⎢ ⎥− +
⎢ ⎥⎣ ⎦

        (10) 

If 0P > , then 0V <&  according to (9) and (10). 
Obviously, matrix inequality 0P >  is equivalent to 
the following two inequalities 

21( ) 0
4

aq c g a− + − >  

2
2

2 2 1( ( ))( ) ( ( )) ( ( )) 0
4 4
a aqaq b k t c g b k t k tε ε ε− + + − + − >

Solving the above two inequalities, and considering 
1 0.05k = , 2 0.1k =  and [ ]( ) 1 1tε ∈ − , we can obtain 

2
2 1

2

( )
min ,

4 4 ( )
a b k qkag c

q q b k q
⎧ ⎫+ +

< − + −⎨ ⎬
−⎩ ⎭

         (11) 

The proof is completed. 

4. Numerical simulation 
Lü’s chaotic system is given by 

                           
1 2 1

2 1 3 2

3 1 2 3

( )x a x x
x x x cx
x x x bx

= −⎧
⎪ = − +⎨
⎪ = −⎩

&

&

&

                        (12) 

Where a , b and c  are three real positive parameters. 
When 36a = , 3b = and 20c = , Lü’s system will 
behave chaotically in Fig.1. 
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Fig.1. Phase portrait of Lü’s chaotic system. 

 
For uncertain Lü chaotic system (6) and (7), the 

error dynamics is  
( ) ( , ) ( )e A A e F x y u t= + Δ + +&  

where 1 2 3( , , )Te e e e= , ( , ) ( ) ( )F x y f y f x= −   

1 2 3( ) [ ( ), ( ), ( )]Tu t u t u t u t= ,  
0

0 0
0 0

a a
A c

b

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

, 1

2

0 0 0
0 0 ( )
0 0 ( )

A k t
k t
ε
ε

⎡ ⎤
⎢ ⎥Δ = ⎢ ⎥
⎢ ⎥−⎣ ⎦

,  

1 3

1 2

0
( )f x x x

x x

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

, 1 2

1 2

0
( )f y y y

y y

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

,  

1 3 1 3

1 2 1 2

0
( , )F x y y y x x

y y x x

⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥−⎣ ⎦

, 

Defined active control ( ) ( ) ( , )u t W t F x y= − and 
choose the controller as follow 

2[0 0]W ge=  
where control parameter 60g = −  is chosen according 
to the above theory.  

Let the initial conditions be [ ](0) 1 2 0 Tx = , 

[ ](0) 0 2 1 Ty = . We can observe the following 
numerical results. In 20s, the motion trajectories have 
entered into the chaotic attractor. From then on, the 
proposed active pining controller is activated. The 
numerical results are described in Fig. 2. As we 
expected, one can observe that the trajectories of the 
slave system asymptotically approach the ones of the 
master system. Errors of synchronization of two 
uncertain chaotic are displayed in Fig. 3. This 
indicates that uncertain chaotic systems are 
synchronized and robust stable in the presence of 
parametric uncertainties finally. 

 
 
 

 
 
 

 
Fig. 2: Synchronization of two Lü’s chaotic system with 
parametric uncertainties 

 

 
 
 



 
  

 
Fig. 3: Error of synchronization of two Lü’s chaotic system 

with parametric uncertainties. 

5. Conclusions 
In this work, a novel active pining controller was 
developed for synchronization of uncertain chaotic 
system. Based on the active control method, the active 
pining control strategy has been achieved. A simple 
sufficient condition is drawn for the robust stability of 
the error dynamics based on Lyapunov stability theory. 
As the simulations show, the new controller could 
achieve synchronization of two uncertain chaotic 
systems and maintain robust stable in the presence of 
parametric uncertainties. 
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