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Abstract

This paper investigates the problem of static output
feedback stabilization for a class of uncertain lin-
ear singular time-delay systems. Firstly, based on
the stability criterion for the nominal singular time-
delay system, a sufficient condition for the existence
of the static output feedback controller in terms of
linear matrix inequality (LMI) with linear matrix
equality (LME) constraint is established, which en-
sures that the resulting closed-loop system is regu-
lar, impulse free and asymptotically stable. Then,
by using matrix orthogonal complement, we fur-
thermore formulate the LMI with LME constraint
as a strict LMI without any constraints, and a para-
meterized representation of the static output feed-
back control law is given by the feasible solution of
the LMI. Finally, a numerical example is presented
to show the effectiveness of the proposed method.
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1. Introduction

Recently, much attention has been devoted to the
problems of robust stability and robust stabiliza-
tion for uncertain singular systems[1][2]. Singu-
lar systems, which are also known as descriptor
systems, semistate-space systems and generalized
state-space systems, are dynamic systems whose
behaviors are described by both differential equa-
tions (or difference equations) and algebraic equa-
tions [3]. Singular system models can preserve the
structure of practical systems and have extensive
applications in power systems, robotic systems and
networks [4]. It should be pointed out that when
the robust stability problem for singular systems is
investigated, the problem of regularity and absence
of impulses (for continuous systems) and causality
(for discrete systems) are required to be considered
simultaneously [5], while the latter two problems

are not required to be considered in standard state-
space systems.

On the other hand, many people have inves-
tigated the static output feedback problem of ei-
ther certain or uncertain systems [6][7]. Although
various approaches have been proposed, the ana-
lytical or numerical solution is still hard to get in
general. The difficulty is that designing a static
output feedback stabilization controller is actually
equivalent to solve a set of bilinear matrix inequal-
ities (BMIs), which are non-convex in general, and
difficult to deal with. Recently, some efforts have
been made to identify some special cases in which
the solvability of the BMIs can be transformed into
a set of linear matrix inequalities (LMIs) which can
numerically be solved by LMI toolbox. For instant,
under some sufficient conditions, it is shown that
the static output sufficient conditions is solvable if
the existence condition of static output feedback
controller is expressed in terms of LMIs and linear
matrix equality (LME) constraints [8]. To the best
of our knowledge, there are only a few papers in-
vestigating the static output feedback problems for
singular time-delay systems.

In the paper, the static output feedback sta-
bilization of uncertain singular time-delay systems
is investigated. Based on the stability criterion
for the nominal singular time-delay system, a suffi-
cient condition of the existence of the robust static
output feedback controller is obtained in terms of
LMI with LME constraint. Then using the matrix
orthogonal complement method , we furthermore
transfer the problem of solving the LMI with LME
constraint into the problem of solving a strict LMI,
which can easily be obtained feasible solution by
LMI toolbox.

Notations Throughout this paper, the follow-
ing notations are used. AT is the transpose of the
matrix A. A > 0(A < 0) means A is positive
(negative) definite. And for a n × m full column
rank matrix A, A⊥ denotes the orthogonal com-
plement of matrix A. λ(E, A) represents the set
{s p det(sE −A) = 0}.



2. Problem Formulation

Consider the uncertain singular time-delay systems
described by

Eẋ = (A + ∆A)x(t) + (Ad + ∆Ad)x(t− d)
+(B + ∆B)u(t)

y(t) = Cx(t) (1)
x(t) = ϕ(t), t ∈ [−d, 0]

where x(t) ∈ <n is system state, u(t) ∈ <m is con-
trol input, y(t) ∈ <m is control output, d > 0 is a
constant time delay, ϕ(t) is any given initial con-
dition defined on [−d 0]. The matrix E may be
singular and we shall assume that rankE = r < n.
A, Ad, B and C are constant matrices with appro-
priate dimensions. In this paper, we assume that C
is full of rank. ∆A, ∆Ad, ∆B are unknown matri-
ces representing the admissible uncertainties in the
system matrices and can be described as the form
of

[∆A ∆Ad ∆B] = HF (t)[Na Nd Nb] (2)

where H, Na, Nd, Nb are real constant ma-
trices with appropriate dimensions, and F (t) is an
unknown, real, and possibly time-varying matrix
with Lebesgue measurable elements satisfying

FT (t)F (t) ≤ I (3)

The nominal unforced counterpart of the sys-
tem (1) can be written as

Eẋ(t) = Ax(t) + Adx(t− d) (4)
z(t) = Cx(t) (5)

To fascinate the following discussion, we intro-
duce some definitions and lemmas :

Definition 1[9]

(1) The pair (E, A) is said to be regular if det(sE−
A) is not identically zero.

(2) The pair (E, A) is said to be impulse free if
deg(det(sE −A))=rankE.

(3) The pair (E, A) is said to be stable if λ(E, A) <
0.

(4) The Pair (E, A) is said to be admissible if it is
regular, impulse free and stable.

Lemma 1[10] For a given scalar d∗ > 0, the
singular time-delay system (4) is said to be regu-
lar and impulse free for any constant time delay
d satisfying 0 ≤ d ≤ d∗, if the pairs (E, A) and
(E, A + Ad) are regular and impulse free.

Lemma 2[10] For a given scalar d∗ > 0, the
singular time-delay system (4) is admissible for any
constant time-delay d satisfying 0 ≤ d ≤ d∗, if there
exist symmetric positive definite matrices P, Q, Z
and matrices S, X, Y such that the following linear
matrix inequalities are satisfied




Ξ11 Ξ12 d∗AT Z
∗ −Q d∗AT

d Z
∗ ∗ −d∗Z


 < 0 (6)

[
X Y
∗ Z

]
≥ 0 (7)

where R ∈ <n×(n−r) is any full-column rank matrix
satisfying ET R = 0 and

Ξ11 = ET PA + AT PE + SRT A + AT RST

+Y E + ET Y T + d∗X + Q,

Ξ12 = −Y E + ET PAd + SRT Ad.

Lemma 3[11] Given matrix Ω,Γ and Ξ with
appropriate dimensions and with Ω symmetrical,
then

Ω + ΓFΞ + ΞT FT ΓT < 0

for any F satisfying FT F ≤ I, if and only if there
exists a scalar ε > 0 such that

Ω + ε−1ΓΓT + εΞT Ξ < 0.

Lemma 4[8] Suppose D ∈ <n×q and G ∈ <n×q

are full column rank. Then there exists a n × n
positive definite matrix P such that PD = G if
and only if DT G = GT D > 0. Furthermore, all
solutions of PD = G can be expressed as

P = G(DT G)−1GT + D⊥T

XD⊥ (8)

where X ∈ <(n−q)×(n−q) is an arbitrary positive
definite matrix.

3. Main Results

In this section, we investigate the static output
feedback control problem for singular time-delay
system (1). To this end, we consider the follow-
ing state feedback controller

u(t) = Kx(t) (9)

Applying this controller to the singular time-delay
system (1) with ∆A = 0, ∆B = 0 and ∆Ad = 0
results in the closed-loop system as

Eẋ(t) = (A + BKC)x(t) + Adx(t− d) (10)



Then, the static output feedback control problem
to be addressed is to design a output feedback con-
troller (9) such that the closed-loop system (10) is
admissible.

By resorting to Lemma 2, we have the solution
to the static output feedback control problem as
follows.

Theorem 1 For given scalars d∗ > 0 and
δ1, δ2, the closed-loop singular time-delay system
(10) is admissible for any constant time-delay d
satisfying 0 ≤ d ≤ d∗, if there exist symmet-
ric positive-definite matrices P1, Q1, Z1, matrices
T, S1, X1, X2, Y1, Y2, N and nonsingular ma-
trix M such that the linear matrix inequalities (11)
and(12) with linear matrix equality (13) hold




Ξ11 Ξ12 −Y1E
T + δ1T

T AT
d

∗ Ξ22 −Y2E
T + δ2T

T AT
d

∗ ∗ −Q1


 < 0 (11)




X1 X2 Y1

∗ X3 Y2

∗ ∗ Z1


 ≥ 0 (12)

MC = CT (13)

then, a suitable static output feedback control law
is given as

u(t) = Ky(t) = NM−1y(t)

where R1 ∈ <n×(n−r) is any full column rank ma-
trix satisfying ER1 = 0 and

Ξ11 = δ1(AT + BNC) + δ1(AT + BNC)T

+Y1E
T + EY T

1 + d∗X1 + Q,

Ξ12 = EP + S1R
T
1 − δ1T

T + δ2(AT + BNC)
+EY T

2 + d∗X2,

Ξ22 = −δ2(T + TT ) + d∗X3 + d∗Z1

Proof Following the similar philosophy as that
in [12], we represent the system (10) to the following
equivalent form
[

E 0
0 0

] [
ẋ(t)
ż(t)

]
=

[
0 I

Ã −I

] [
x(t)
z(t)

]

+
[

0 0
Ad 0

] [
x(t− d)
z(t− d)

]
(14)

where z(t) = Eẋ(t), Ã = A + BKC. Then, by
Lemma 2, it is easy to see that the system (14) is
admissible for 0 ≤ d ≤ d∗, if there exist symmetric
positive definite matrices P , Q, Z and matrices X,
Y satisfying (6) and (7) where E is replaced by[

E 0
0 0

]
, A by

[
0 I
A −I

]
and Ad by

[
0 0

Ad 0

]
.

As a particular case, we set

P =
[

P1 0
0 εI

]
, R =

[
R1 0
0 P3

]

S =
[

S1 S2

0 I

]
, Q =

[
Q1 0
0 εI

]

X =
[

X1 X2

∗ X3

]
, Y =

[
Y1 0
Y2 0

]
,

Z =
[

Z1 0
0 εI

]

where P1, P3 ∈ <n×n are nonsingular matrices with
P1 symmetric and positive-definite, R1 ∈ <n×(n−r)

satisfies ET R1 = 0 and rank R1 = n − r, S1 ∈
<n×(n−r), S2 ∈ <n×n, ε > 0. It is obvious that[

E 0
0 0

]T

R = 0 and R ∈ <2n×(2n−r) is with full

column rank. By denoting P2 = P3S
T
2 and letting

ε → 0+, we obtain the following linear matrix in-
equalities




Ξ11 Ξ12 −Y1E + PT
2 Ad

∗ Ξ22 −Y2E + PT
3 Ad

∗ ∗ −Q1


 < 0 (15)




X1 X2 Y1

∗ X3 Y2

∗ ∗ Z1


 ≥ 0 (16)

where

Ξ11 = PT
2 (AT + BKC) + (AT + BKC)T P2

+Y1E
T + EY T

1 + d∗X1 + Q,

Ξ12 = ET P + S1R
T
1 − (AT + BKC)T P3

+ET Y T
2 + d∗X2,

Ξ22 = −P3 − PT
3 + d∗X3 + d∗Z1

Now, we consider the following singular time-
delay system

ET ξ̇(t) = (A + BKC)T ξ(t) + AT
d ξ(t− d) (17)

where ξ(t) is the system state, and the other vari-
ables follow the same definitions as those in (1).

Noting the fact that det(sE −A) = det(sET −
AT ), then the pair (E, A) is regular and impulse
free if and only if the pair (ET , AT ) is regular and
impulse free, thus the system (10) is regular and
impulse free if and only if the system (17) is reg-
ular and impulse free. And since the solution of
det(sE − (A + BK)− e−dsAd) = 0 are the same as
those of det(sET − (A + BK)T − e−dsAT

d = 0), the
system (10) is stable if and only if the system (17)
is stable.



Therefore, as long as the regularity, absence of
impulse and stability are concerned, we consider the
system (17) instead of (10). Then, linear matrix
inequality (11) can be obtained by replacing E by
ET , A by (A + BKC)T , and Ad by AT

d in (15) and
setting P2 = δ1T , P3 = δ2T , N = KM and MC =
CT . This completes the proof.

Remark 1 In the case of C = I, matrix M and
T become the same variable, and the inequalities in
Theorem 1 can reduce to the result of state feedback
stabilization of singular time-delay system [10].

In the following, we investigate the robust sta-
tic output feedback control problem for singular
time-delay system (1).

Theorem 2 Consider the uncertain singu-
lar time-delay system (1), for a given scalar
d∗ > 0 and δ1, δ2, if there exist symmetric
positive-definite matrices P1, Q1, Z1, matrices
T, S1, X1, X2, Y1, Y2, N , nonsingular matrix
M and scalars ε1 > 0, ε2 > 0 such that the linear
matrix inequalities (18) and (12), (13)




Ξ11 Ξ12 Ξ13 Ξ14 δ1T
T NT

d

∗ Ξ22 Ξ23 Ξ24 δ2T
T NT

d

∗ ∗ Ξ33 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε2I




< 0 (18)

then, we can consider a suitable static output feed-
back control law of the form

u(t) = Ky(t) = NM−1y(t) (19)

such that the resultant closed-loop system is ad-
missible for all admissible uncertainties and for all
constant time-delay d satisfying 0 ≤ d ≤ d∗, where
R ∈ <n×(n−r) is any matrix with full column rank
and satisfies ER = 0 and

Ξ11 = δ1(AT + BNC) + δ1(AT + BNC)T

+Y1E
T + EY T

1 + d∗X1 + Q + ε1HHT ,

Ξ12 = EP + S1R
T
1 − δ1T

T + δ2(AT + BNC)
+EY T

2 + d∗X2,

Ξ22 = −δ2(T + TT ) + d∗X3 + d∗Z1

Ξ13 = −Y1E
T + δ1T

T AT
d

Ξ23 = −Y2E
T + δ2T

T AT
d

Ξ33 = −Q1 + ε2HHT

Ξ14 = δ1(NaT + NbNC)T

Ξ24 = δ2(NaT + NbNC)T

Proof Replacing A by A + HF (t)Na, Ad by
Ad + HF (t)Nd and B by B + HF (t)Nb in (11)

results in the following inequality

Λ + [HT 0 0]T F (t)Ψ + ΨT FT (t)[HT 0 0]
+[0 0 HT ]T F (t)Φ + ΦT FT (t)[0 0 HT ] < 0 (20)

where Λ is equivalent to the left side of (11) and

Ψ =
[

δ1(NaT + NbNC)T δ1(NaT + NbNC)T 0
]

Φ =
[

δ1NdT δ2NdT 0
]

By using Lemma 3, it can be shown that (20)
holds for any F (t) satisfying (3), if and only if there
exist scalars ε1 > 0 and ε2 > 0 such that

Λ + ε1[HT 0 0]T [HT 0 0] + ε−1
1 ΨT Ψ

+ε2[0 0 HT ]T [0 0 HT ] + ε−1
2 ΦT Φ < 0 (21)

which, by Shur Complement, is equivalent to (18).
This completes the proof.

Remark 2 It should be pointed that the ob-
tained conditions in Theorem 1 and Theorem 2 are
not given in term of strict LMI, but in LMI with
LME constraint, which is not easily solved in nu-
merical method. Following the similar philosophy
as that in [8], we formulate the problem of solving
the LMI with LME constraint into the problem of
solving a strict LMI.

Theorem 3 The linear matrix inequalities
(18), (12) with linear matrix equality (13) is
solvable, if there exists symmetric positive def-
inite matrices P1, Q1, Z1, U, V , matrices
S1, X1, X2, X2, Y1, Y2, N and scalars ε1, ε2 satisfy-
ing (12) and the following strict linear inequality




Π11 Π12 Π13 Π14 Π15

∗ Π22 Π23 Π24 Π25

∗ ∗ Π33 0 0
∗ ∗ ∗ −ε2I 0
∗ ∗ ∗ ∗ −ε2I




< 0 (22)

then, we can consider a suitable static output feed-
back control law of the form

u(t) = Ky(t) = −NCCT V −1y(t) (23)



where C0 = CT (CCT )−1 , Υ = CT⊥
T

UCT⊥ and

Π11 = δ1(AC0V
T CT

0 + C0V CT
0 AT + AΥT

+ΥAT + BNC + CT NT BT ) + Q1

+Y1E + EY T + d∗X1 + ε1HHT

Π12 = (−δ1I + δ2A)(C0V CT
0 + ΥT )

+BNC + EY T
2 + d∗X2 + EP + S1R

T
1

Π22 = −2δ2(C0V
T CT

0 + ΥT ) + d∗X3 + d∗Z1

Π13 = −Y1E
T + δ1(C0V CT

0 AT
d + ΥAT

d )
Π23 = −Y2E

T + δ2(C0V CT
0 AT

d + ΥAT
d )

Π14 = δ1(C0V CT
0 NT

a + ΥNT
a + (NbNC)T )

Π24 = δ2(C0V CT
0 NT

a + ΥNT
a + (NbNC)T )

Π15 = δ1(C0V CT
0 NT

d + ΥNT
d )

Π25 = δ2(C0V CT
0 NT

d + ΥNT
d )

Proof Suppose that there exist positive def-
inite matrices P1, Q1, Z1, U, V , matrices
S1, X1, X2, X2, Y1, Y2, N and scalars ε1, ε2 satisfy-
ing (22). Let M = V (CCT )−1M, then we have

C0V CT
0 = C0MC (24)

CCT MT = MCCT > 0 (25)

From (25) and Lemma 4, we can see that MC =
CT has a positive definite solution

T = (C0MC)T + Υ (26)

Substituting (25) and (26) into (22) leads to (18).
Thus, the linear matrix inequalities (18) and (12)
with linear matrix equality (13) are solvable. This
completes the proof.

Remark 3 Since C is full row rank, M =
V (CCT )−1 is well defined.

4. Numerical example

In this section, we give an example to demonstrate
the effectiveness of the proposed method.

Consider an uncertain singular time-delay sys-
tem in (1) with parameters as follows:

E =
[

1 0
0 0

]
, A =

[
1 1
−1 −2

]
, B =

[
2
1

]
,

Ad =
[

0 0
0.1 0.1

]
, Nd =




0 0
0 0
1 1


 , Nb =




0
1
0


 ,

Na =




1 1
0 0
0 0


 , H =




0.1 0
0 0.1

0.1 0




T

,

C =
[

1 1
]

Now, to solve the static output feedback control
problem, we choose R = [0 1]T , δ1 = 6 and δ2 = 8,
then it can be checked that

P1 =
[

17.5283 −0.0000
−0.0000 26.0133

]
,

Q1 =
[

0.5458 −0.0012
−0.0012 28.7737

]
,

X1 =
[

0.0675 −0.0509
−0.0509 0.0545

]
,

X2 =
[

0.0774 −0.0803
−0.0803 0.0825

]
,

X3 =
[

0.1251 −0.1283
−0.1283 0.1345

]
,

Y1 =
[ −0.0044 0.0035

0.0035 −0.0034

]
,

Y2 =
[ −0.0047 0.0046

0.0046 −0.0044

]
,

S1 =
[ −5.5175

43.9842

]
,

V = 2.6188,

N = −1.2755,

U = 13.4155,

ε1 = 36.5030,

ε2 = 26.1566

satisfy the linear matrix inequality (22), Therefore,
by Theorem 3, we have that the static output feed-
back control problem is solvable, and a desired sta-
tic output feedback control law can be chosen as

u(t) = −1.2755y(t)

5. Conclusions

The problem of static output feedback stabiliza-
tion for uncertain singular systems with time-delay
in state is investigated in this paper. A delay-
dependent sufficient condition of existence of the
static output feedback controller is obtained, which
ensure the closed-loop system is admissible. In ad-
dition, the obtained condition for the existence of
admissible controller is not expressed in terms of a
strict LMI, so the matrix orthogonal complement
has been explored to solve the non-convex prob-
lem. Finally, a numerical example is provided to
show the applicability of the developed results.
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